
SketchingInterfaces: A Tool for Automatically Generating
High-Fidelity User Interface Mockups from Hand-Drawn

Sketches
Christoph Wimmer

TU Wien
Vienna, Austria

christoph.wimmer@inso.tuwien.ac.at

Alex Untertrifaller
TU Wien

Vienna, Austria
alex.untertrifaller@inso.tuwien.ac.at

Thomas Grechenig
TU Wien

Vienna, Austria
thomas.grechenig@inso.tuwien.ac.at

ABSTRACT
Sketches are an integral part of designing user interfaces and despite
advances in design tools, many user interface designers still rely
on pen and paper when creating these sketches because of their
reliability, familiarity and ease of use. Rough sketches arewell suited
for quick ideation and experimentation, but are typically lacking in
detail, resulting in limited readability and clarity when presented
to others. In this paper we present the SketchingInterfaces tool,
which uses machine learning to translate hand-drawn UI sketches
into high-�delity UI mockups in real-time. The goals of this tool
are the following: (1) to speed up the design process, (2) to allow
rapid iteration on near-�nal design artifacts, (3) to improve group
collaboration and (4) to lower the threshold of required design
skills. We present the results of a study evaluating the tool with six
participants to demonstrate the viability of the approach.

CCS CONCEPTS
•Human-centered computing! Systems and tools for inter-
action design; Empirical studies in interaction design.

KEYWORDS
user interface design, design tools, sketching, prototyping, machine
learning

ACM Reference Format:
ChristophWimmer, Alex Untertrifaller, and ThomasGrechenig. 2020. Sketching-
Interfaces: A Tool for Automatically Generating High-Fidelity User Inter-
face Mockups from Hand-Drawn Sketches. In 32ND AUSTRALIAN CON-
FERENCE ON HUMAN-COMPUTER INTERACTION (OzCHI ’20), Decem-
ber 2–4, 2020, Sydney, NSW, Australia. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3441000.3441015

1 INTRODUCTION
Designing user interfaces is commonly understood to be an iterative
process, wherein design artifacts of increasing �delity are created
and iteratively improved and re�ned. Designers begin by creating
rough sketches to express their initial ideas and explore alternatives

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
OzCHI ’20, December 2–4, 2020, Sydney, NSW, Australia
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8975-4/20/12. . . $15.00
https://doi.org/10.1145/3441000.3441015

before moving on to increasingly more detailed representations of
a �nal design. This exploration and experimentation with di�erent
ideas is considered a crucial part of user interface design in order
to explore the possible solution space before choosing the most
promising concepts to focus on [3]. Otherwise there’s a risk to
focus on the �rst possible solution that comes to mind, rather than
�nding the best possible solution to a given design problem.

Despite great technological advances in design tools, many de-
signers still prefer to use hand-drawn sketches made with pen and
paper for these early, exploratory phases of design ideation. New-
man and Landay [13] found in a study of website design practice
that "[a]lmost all of the designers did at least some sketching on
paper, generally during the design exploration phase". A design
industry survey from 2015 [19] with more than 4000 participants
from 196 countries found that an overwhelming majority of 64
% of participants preferred pen and paper for their ideation and
brainstorming phase.

The advantages of pen and paper for sketching are readily appar-
ent: these tools are �exible, reliable, intimately familiar to everyone,
easy to use, cheap and readily available. As such, sketching with
pen and paper is particularly well suited for "the design exploration
phase of a project, when designers wish to explore many design
possibilities quickly without focusing on low-level details" [13].

However, sketches also have limitations and drawbacks. Rough,
hand-drawn sketches typically lack detail and therefore fail to create
an accurate impression of what the �nal user interface will actually
look like. Sketches can be ambiguous, lacking in clarity and thus
be open to misinterpretation. This can be particularly challenging
when using sketches for communication and collaboration with
other designers or stakeholders, who might gain a very di�erent
mental image of a �nal design when looking at sketches and �lling
in the blanks. In addition, the process of re�nement when moving
from rough sketches to detailed, high-�delity representations of
the �nal user interface design is still a rather laborious process.

To address these issues, we present the SketchingInterfaces tool.
SketchingInterfaces is a proof-of-concept prototype which uses
machine learning to recognize hand-drawn user interface sketches
and convert them into detailed high-�delity mockups in real-time.
In doing so, the purposes of this tool are the following:

(1) to speed up the design process when moving from rough
sketches to detailed high-�delity mockups,

(2) to allow rapid iteration on near-�nal design artifacts,
(3) to improve group collaboration and,
(4) to lower the threshold of required design skills and techni-

cal skills, and by extension to foster inclusion by allowing

https://doi.org/10.1145/3441000.3441015
https://doi.org/10.1145/3441000.3441015

OzCHI ’20, December 2–4, 2020, Sydney, NSW, Australia Wimmer, Untertrifaller and Grechenig

(a) (b) (c) (d)

Figure 1: Example of (a) sketch input and corresponding conversion results produced by (b) Sketch2Code [6], (c) uizard.io [18]
and (d) SketchingInterfaces tool (samples from Sketch2Code and uizard.io taken on July 21, 2020)

stakeholders of various skill levels to directly partake in UI
design processes

by bridging the gap between physical artifacts such as hand-drawn
sketches and detailed digital representations of the corresponding
user interfaces. It must be stressed that the purpose of this tool is
not to replace designers and their creative process by automating
the creation of user interfaces, but rather to assist them in their
work.

The contributions of this paper are twofold: �rst the architecture,
design and functionality of the SketchingInterfaces tool, and second
the results of an initial user study conducted to evaluate the utility
and usability of the tool and to gain further insight into how such
a tool might �t into a designer’s work�ow and process.

2 RELATEDWORK
Buxton characterizes sketching as an archetypal design activity
that is related and complementary to, but distinct from prototyping
[2]. This distinction is borne of a di�erence in purpose and intent:
whereas prototypes converge toward a clear goal or result through
iterative improvement once a basic understanding of the expected
outcome has been established and are more concentrated at the
later stages of a design process, sketches are more often used in
the early design stages for purposes of creative ideation and explo-
ration of a design space at the outset. Sketches and prototypes are
nevertheless related and their boundaries are �eeting: both are rep-
resentations of a design concept and through iterative improvement
and re�nement, sketches can serve as a foundation and evolve into
more detailed and re�ned prototypes. In moving from low-�delity
sketches to high-�delity prototypes and mockups, designers have to
expend additional time and e�ort [15] and a prior study found "an
increase in workload speci�cally in frustration, temporal demand,
e�ort, and decline in performance as the participants progressed
from low to high �delity" [17].

For this reason, supporting and improving the creation of sketches
in user interface design processes has been a goal of researchers and
tool creators for many years. An early example is SILK [7, 8], which
"allows designers to quickly sketch an interface using an electronic
pad and stylus" and to create storyboards from these sketches in
order to express their interactive behaviour. Another example is

DENIM [9], a tool for supporting designers in creating websites
which "allows designers to quickly sketch out pages, create links
among them, and interact with them in a run mode." A more recent
example is EVE [17], which provides designers with a digital canvas
to create low-�delity sketches and subsequently transforms those
sketches into more detailed medium- and high-�delity prototypes
with a UI element detector using TensorFlow Object Detection API.
In contrast to the SketchingInterfaces tool, the aforementioned
tools don’t allow designers to use pen and paper for sketching, but
rather provide a digital canvas for sketch creation.

With advances and more wide-spread adoption of machine learn-
ing, researchers and designers from both academia and industry
have begun to explore its use as a tool for the automatic creation of
user interfaces. A number of tools that translate hand-drawn user in-
terface sketches into digital representations of those sketches exist:
uizard.io [18] is a service (available in private beta as of July 2020)
which allows designers to upload a photo of their user interface
sketches for automatic, server-side conversion into a detailed UI
mockup. Similarly, Sketch2Code [6] is a publicly available research
prototype by Microsoft AI Lab which provides similar functionality,
allowing designers to submit a photo of their user interface sketches
for conversion into HTML code. However, there is a crucial dif-
ference regarding work�ow between uizard.io and Sketch2Code
compared to the SketchingInterfaces tool: whereas the former re-
quire designers to submit a picture as a static representation of their
sketch for subsequent conversion, SketchingInterfaces converts live
camera imagery, allowing designers to directly edit and re�ne their
sketches (e.g. on a whiteboard), with those changes represented in
real-time in the digital conversion of their sketches. A comparison
of example conversion results produced by Sketch2Code, uizard.io
and the SketchingInterfaces tool is demonstrated in Figure 1.

Similar concepts to those implemented in the SketchingInterfaces
tool were demonstrated in prototypes by designers fromAirbnb [20]
and Xing [16]. Unfortunately no further information about these
prototypes beyond the aforementioned weblog postings and their
associated video demonstrations appear to be publicly available.

Beyond sketch recognition, researchers have also investigated
the use of computer vision andmachine learning for model building,
automatic source code generation or semantic feature extraction
from static UI screenshots and mockups. For example, REMAUI

SketchingInterfaces: Generating High-Fidelity Mockups from Hand-Drawn Sketches OzCHI ’20, December 2–4, 2020, Sydney, NSW, Australia

Figure 2: SketchingInterfaces architecture: Hand-drawn sketches serve as input and are analyzed by DoodleClassi�er; Doo-
dleClassi�er communicates with the core SketchingInterfaces application using OSC protocol; the core SketchingInterfaces
application consists of the following sub-components: layout engine, mapping engine, component libraries and an embedded
WebView for result visualization

[14] infers working UI code from a screenshot or mockup of a
mobile app using computer vision and optical character recognition,
bridging the gap between detailed UI mockups and implementation.
Pix2code [1], ReDraw [12] and a framework presented by Chen et
al. [5] similarly generate UI code from a static input image such
as a screenshot, but in contrast to REMAUI rely on convolutional
neural networks for reverse engineering the input images into UI
code. Chen et al. [4] presented a tool for generating UI skeletons
based on an input image and Liu et al. [10] describe the use of a
convolutional neural network to generate semantic annotations
for mobile app UIs. Compared to the SketchingInterfaces tool, the
aforementioned works rely on screenshots or detailed high-�delity
mockups as input rather than hand-drawn sketches. Furthermore
and in contrast to these works, which largely focus on technical
qualities and aspects, this paper focuses on use-oriented qualities
and how such a tool can �t into a designer’s work�ow.

3 ARCHITECTURE, IMPLEMENTATION AND
FUNCTIONALITY

Compared to similar, existing tools and projects [6, 16, 18, 20],
SketchingInterfaces supports the following features and function-
ality: (1) real-time component detection, recognition and mockup
visualization, (2) support for both desktop and mobile UIs, (3) multi-
column layout support, (4) support for multiple front-end frame-
works, (5) extensibility for additional front-end frameworks and
component libraries, and (6) an easy-to-use application GUI. While
other tools support some of these features, their combination in
one uni�ed tool is to the best of our knowledge unique.

The SketchingInterfaces tool consists of multiple components
as shown in Figure 2. SketchingInterfaces uses D�����C���������
[11] for real-time component detection and recognition from the
live camera feed. DoodleClasi�er is part of the Machine Learning
for Artists (ml4a-ofx) toolkit, a collection of tools that enables

creative coders and artists to experiment with machine learning in
their work. DoodleClassi�er uses the OSC protocol for real-time
communication with the core SketchingInterfaces application. Each
OSC message contains a list of components and each component
contains a label descriptor of the detected component, its area size,
its x- and y-coordinates, and its width and height (see Figure 3).
A rather limited data set for training DoodleClassi�er, consisting
of six to ten training sketches for each supported UI component,
was su�cient to achieve acceptable recognition accuracy for the
prototype.

(a)

(b)

Figure 3: Component detection and example OSC message

The core SketchingInterfaces application is an Electron applica-
tion consisting of the following parts: The ������ ������ aligns
components and places them in a precise layout grid using lay-
outing heuristics based on the size and position of components
detected by DoodleClassi�er. In contrast to some existing tools

OzCHI ’20, December 2–4, 2020, Sydney, NSW, Australia Wimmer, Untertrifaller and Grechenig

(a) Horizontal alignment (b) Grouping

(c) Vertical alignment (d) Generated layout grid

Figure 4: Layout processing performed by layout engine

which only support mobile app UIs with single-column layouts,
the layout engine also supports desktop applications with more
complex multi-column layouts. In a �rst step, the layout engine
detects components that are horizontally aligned based on their
originating y-coordinate, allowing for a certain tolerance threshold
to account for imprecisions in hand-drawn sketches (see Figure
4a), and groups them in a container. It then iterates through all the
other detected components to determine whether their originating
x- and y-coordinates are inside the bounding box of an existing
container and if they are, adds them to the corresponding container
(see Figure 4b). In a �nal step, the components inside a container are
vertically aligned in columns (see Figure 4c). The resulting layout
is transmitted to the mapping engine for conversion into an HTML
layout grid (see Figure 4d).

The ������� ������ translates recognized sketch components
into their corresponding high-�delity components. High-�delity
components can be provided by existing front-end frameworks
(such as Bootstrap) or custom component libraries and style guides.
Mappings from sketch components to high-�delity components
are de�ned in a dictionary in JSON format. The current version of
SketchingInterfaces supports two front-end frameworks (Bootstrap
and Material Design Lite), but support for additional frameworks
and component libraries can be easily extended by creating new
mapping dictionaries.

The resulting high-�delity mockups are output in HTML for-
mat and displayed in an embedded WebView within the applica-
tion. Users can switch between desktop and mobile viewports for

mockup visualization and can toggle the display of grid guidelines
to visualize the underlying layout grid.

SketchingInterfaces currently supports the following UI compo-
nents: button, input �eld, image, text, info card, carousel, navigation
bar and table. Support for additional components can be added by
extending the training data set of DoodleClassi�er and by adding
the corresponding mappings to the existing mapping dictionaries.

4 TOOL EVALUATION
To evaluate the SketchingInterfaces tool, the viability of its ap-
proach and how it in�uences the design process, we conducted a
small-scale pilot study with six participants.

4.1 Study Design
Due to the exploratory and qualitative nature of the pilot study
a non-probability purposive sampling technique was employed.
Potential candidates for participation in the study were recruited
among colleagues and acquaintances and those candidates were
asked to refer additional potential candidates in their social circle.
The six participants (2 female, 4 male; mean age 29.5) were selected
to represent di�erent skill sets and experiences with regards to user
interface design and were classi�ed in three groups: two partici-
pants were software developers, two participants were graphics
designers and two participants had no professional experience in
designing user interfaces. Participants with di�erent skill sets and
professional backgrounds were selected in order to identify dif-
ferences in their expectations and requirements and to assess the

SketchingInterfaces: Generating High-Fidelity Mockups from Hand-Drawn Sketches OzCHI ’20, December 2–4, 2020, Sydney, NSW, Australia

(a) (b) (c)

Figure 5: Study setup consisting of laptop, whiteboard and camera mounted on top of the whiteboard

usability of the tool for di�erent stakeholders, particularly non-
experts in user interface design. All participants voluntarily agreed
to participate in this study and received no compensation for their
participation.

Participants were provided with a short introduction of the tool,
its capabilities and the supported UI components and were then
instructed to complete a series of tasks. Upon completion of the
tasks, participants were asked to answer a short questionnaire
to gather their subjective impression of the tool and suggestions
for improvement. All participants were instructed to complete a
series of four tasks. Three of those tasks consisted of reproducing a
user interface sketch that was provided to them (two desktop UIs,
one mobile UI). These tasks were completed by each participant
individually. The fourth and �nal task consisted of designing a
simple mobile user interface for a time tracking app from scratch.
Participants worked on this task in pairs in order to assess the tool
in a collaborative multi-user setting and to observe collaboration
strategies.

After completing the tasks, participants answered a short ques-
tionnaire consisting of four closed questions regarding the usability
and utility of the tool (see Table 2 for questions and questionnaire
results), to be answered on a ten-point semantic di�erential scale,
and four open-ended questions regarding (1) missing functionality,
(2) encountered errors, (3) whether the supported UI components
were su�cient and suggestions for additional components and (4)
general suggestions for improvement.

The study employed a laptop computer with the SketchingInter-
faces tool installed and a 1080p Full HD webcam connected (see
Figure 5). The camera was mounted on top of a whiteboard with a
distance of 100 cm between camera and whiteboard. The position
of the camera was chosen so that participants were not disturbed
by the presence of the camera and could draw on the whiteboard

without constraint. Participants used a black marker with 1mm
stroke width to ensure reliable stroke recognition.

4.2 Evaluation Results
4.2.1 Task Completion and Errors. All six participants were able to
quickly understand and use the tool as intended. All participants
were able to largely ful�ll the given tasks to their personal satis-
faction, albeit with occasional errors in component recognition or
placement. An example of task 2, consisting of the sketch for repro-
duction, sketches from three participants and the �nal output of
the SketchingInterfaces tool, is shown in Figure 6. Four participants
encountered errors in task 1 (3 recognition errors, 2 positioning
errors), two participants encountered errors in tasks 2 and 3 (2
recognition errors in task 2, 3 recognition and 1 positioning error
in task 3) and all participants were able to solve task 4 correctly
without errors (see Table 1). In total, the participants sketched 129
components across all four tasks as part of the study. Of those, 121
components (93.8 %) were correctly recognized and 126 components
(97.67 %) were correctly positioned within the screen layout.

4.2.2 Participant Comments and Observations. The results of the
post-test questionnaire show that participants rated the tool as
usable (M = 7.17, SD = 0.91) and useful for evaluating ideas and
solutions (M = 8.17, SD = 0.69) on a ten-point scale (10 being best).
Participants stated that the mockups generated from their sketches
corresponded to their expectations (M = 7.83, SD = 1.07) and that
they were able to solve the tasks to their satisfaction (M = 8.67, SD
= 0.49) (see Table 2). Asked for missing functionality, one partici-
pant expressed his wish for more �exible handling of text blocks of
variable length and two participants suggested more precise posi-
tioning with more �ne-grained control regarding spacing between
components. Regarding encountered errors, �ve participants ob-
served the confusion between text input �elds and navigation bars,
the most common recognition error in the study. Asked whether

OzCHI ’20, December 2–4, 2020, Sydney, NSW, Australia Wimmer, Untertrifaller and Grechenig

(a) (b)

(c) (d) (e)

Figure 6: Example Task 2: (a) Sketch to be reproduced by participants (b) resulting output (c - e) sketches from three participants

Table 1: Task completion and number of encountered errors

Task Completed Number of
Correctly With Errors Recognition Errors Positioning Errors

Task 1 2 4 3 2
Task 2 4 2 2 0
Task 3 4 2 3 1
Task 4 6 0 0 0

the supported user interface components were su�cient to solve
the tasks and for suggestions for additional components, �ve partic-
ipants found the available components to be su�cient. Suggestions
for additional components included checkboxes, diagrams, pass-
word input �elds and mobile optimized UI components. When
questioned about suggestions for improvement, participants ad-
dressed the aforementioned encountered problem areas, as well as
improvements in recognition reliability regarding environmental
factors (e.g. lighting conditions) and support for customizable color
schemes.

Observations from the study expectably revealed some degree
of variation in drawing style between participants. For example,
there were di�erences in how straight or wavy lines were drawn,

however these di�erences had no noticeable impact on recognition
accuracy. There were also di�erences in the sizing of components,
especially for buttons and blocks of text, which did result in a
degradation of recognition accuracy and required recalibration
of detection parameters for smaller component sizes to alleviate
these problems. Finally, there were also di�erences in the spacing
between components. Placing components too close to each other
caused errors in component detection as the tool con�ated several
individual components into one. Participants facedwith these errors
quickly adapted by increasing their component spacing to work
around this problem. In general, participants quickly adapted to
shortcomings of the tool: results improved and errors decreased
with each completed task (compare Table 1).

SketchingInterfaces: Generating High-Fidelity Mockups from Hand-Drawn Sketches OzCHI ’20, December 2–4, 2020, Sydney, NSW, Australia

Table 2: Questionnaire results

Question (10-point semantic di�erential scale) Mean SD

How usable is the tool? 7.17 0.91
1 = unusable | 10 = usable

How useful is the tool for evaluating ideas and problem solutions? 8.17 0.69
1 = useless | 10 = useful

Do the results generated from your sketch correspond to your expectations? 7.83 1.07
1 = deviate greatly | 10 = correspond well

Were you able to solve the tasks to your satisfaction? 8.67 0.49
1 = dissatis�ed | 10 = satis�ed

The fourth task, where participants created their own design
solution to a given problem in pairs, was met with the greatest
enthusiasm. Participants enjoyed letting their imagination and cre-
ativity runwild and all three groupings produced di�erent solutions.
All pairings exhibited a similar approach to solving the problem.
They began with discussions about possible solutions before turn-
ing to sketching. The sketching itself was usually done by only one
person, with the other person observing and providing feedback
and comments. When the initial sketches were done, the teams dis-
cussed their solution and started making changes, e.g. by changing
components or their positioning.

Regarding the di�erent professional backgrounds and skill sets
of the participants, some di�erences could be observed: participants
with no design experience required more extensive guidance and
instructions about the available UI components compared to soft-
ware engineers and graphics designers. However, after this initial
guidance, all participants were able to work on the tasks without
problems, indicating the usability of the tool without design-speci�c
experience or skills. In addition, the graphics designers had higher
expectations regarding the quality of the design artifacts created
by the tool compared to the other participants and suggested addi-
tional features for improvement, such as user-customizable fonts
and color schemes.

5 DISCUSSION AND CONCLUSION
We consider the SketchingInterfaces tool in its current form to be a
proof-of-concept research prototype, rather than a �nished product.
Despite its limitations, results from the initial study and evaluation
are promising, indicating the tool’s usefulness and viability of its
approach. The tool is reliable and performant, supporting the real-
time conversion of hand-drawn sketches into detailed, high-�delity
mockups. Given the limited size of the training data set, component
recognition was surprisingly good with a correct component detec-
tion rate of 93.8 %. The layout engine also performed well, with a
correct component positioning rate of 97.67 %. It must be stressed
that a single, uniform set of training data was used for all partici-
pants and that the training data set was relatively small. The use of
either individual, personalized training data for each participant or
a larger, general training data set could possibly result in improved
recognition accuracy, but was not investigated as part of this study.

Participants were largely able to solve the given tasks and were
satis�ed with the results. Participants quickly adjusted to shortcom-
ings of the tool by adapting their drawing style. While ideally the

tool and its component detection and recognition should be su�-
ciently robust to not require any adjustments on the part of the user,
the results of the study suggest that users are able and willing to
accommodate occasional errors, that they are able to productively
work with the tool and that despite these adjustments they are
still largely satis�ed with the tool and its results. Of the four tasks
presented to participants, the open-ended design task performed
in pairs was particularly well received as it provided an oppor-
tunity to creatively engage with the task, compared to the more
constrained nature of the other reproduction tasks. This indicates
the tool’s potential for quick, creative ideation and collaboration
among peers.

5.1 Limitations and Future Work
Despite promising results from the initial study and evaluation,
there remains ample room for extension and improvement: As men-
tioned, increasing the size of the training data set for component
recognition or using personalized training data for each user could
possibly result in improved recognition accuracy. Beyond changes
to the training data, the use of more �ne-grained or more advanced
machine learning models and techniques for UI component recog-
nition could also lead to improvements. Aside from recognition
accuracy, additional features could improve the usefulness of the
tool, e.g. extended support for additional front-end frameworks or
settings for user-customizable fonts and color schemes (without the
need to modify the front-end frameworks and component libraries
directly). In addition to the currently supported live conversion and
visualization of mockups, a snapshot feature allowing the capture
and export of artifacts would be a worthwhile addition. As an alter-
native to using a hard-wired webcam, using a smartphone camera
as an input source (e.g. by way of a companion app) would provide
greater �exibility in tool setup and use. Furthermore, supporting
the conversion of digital sketches (e.g. created with a stylus and
graphics tablet) would also be feasible.

Finally, going beyond static mockups of user interfaces, the tool
could be extended to support the creation of interactive prototypes
using hyperlinks to navigate between individual mockups. Ideally
these connections between mockups would be directly extracted
from sketches and drawings, rather than requiring the manual cre-
ation of links in the application UI. For example, the tool could
analyze a storyboard drawn on a whiteboard, consisting of individ-
ual screens and their interaction �ows, and automatically create an

OzCHI ’20, December 2–4, 2020, Sydney, NSW, Australia Wimmer, Untertrifaller and Grechenig

interactive high-�delity prototype for testing and evaluation on a
computer, tablet or smartphone.

Aside from technical improvements and feature additions, a more
elaborate evaluation study in a realistic setting, e.g. embedding
the tool in established design processes among practitioners from
industry, could provide further insights into the usefulness of the
tool.

REFERENCES
[1] Tony Beltramelli. 2018. pix2code: Generating code from a graphical user inter-

face screenshot. In Proceedings of the ACM SIGCHI Symposium on Engineering
Interactive Computing Systems. ACM, New York, NY, 1–6.

[2] Bill Buxton. 2006. What sketches (and prototypes) are and are not. In CHI
2006 Workshop “‘Sketching’ Nurturing Creativity: Commonalities in Art, Design,
Engineering and Research.”. ACM, New York, NY, 1–2. Retrieved July 31, 2020
from https://www.cs.cmu.edu/~bam/uicourse/Buxton-SketchesPrototypes.pdf.

[3] Bill Buxton. 2010. Sketching User Experiences: Getting the Design Right and the
Right Design. Morgan Kaufmann, San Francisco, CA.

[4] Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. 2018.
From UI design image to GUI skeleton: a neural machine translator to bootstrap
mobile GUI implementation. In Proceedings of the 40th International Conference
on Software Engineering. ACM, New York, NY, 665–676.

[5] Sen Chen, Lingling Fan, Ting Su, Lei Ma, Yang Liu, and Lihua Xu. 2019. Automated
cross-platform GUI code generation for mobile apps. In 2019 IEEE 1st International
Workshop on Arti�cial Intelligence for Mobile (AI4Mobile). IEEE, New York, NY,
13–16.

[6] Microsoft AI Lab. 2018. Sketch2Code. Website. Retrieved July 31, 2020 from
https://sketch2code.azurewebsites.net/.

[7] James A Landay. 1996. SILK: sketching interfaces like krazy. In Conference
companion on Human factors in computing systems. ACM, New York, NY, 398–
399.

[8] James A Landay and Brad A Myers. 2001. Sketching interfaces: Toward more
human interface design. Computer 34, 3 (2001), 56–64.

[9] James Lin, Mark W Newman, Jason I Hong, and James A Landay. 2000. DENIM:
�nding a tighter �t between tools and practice for Web site design. In Proceedings
of the SIGCHI conference on Human Factors in Computing Systems. ACM, New
York, NY, 510–517.

[10] Thomas F Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha
Kumar. 2018. Learning design semantics for mobile apps. In Proceedings of the
31st Annual ACM Symposium on User Interface Software and Technology. ACM,
New York, NY, 569–579.

[11] ml4a developers. 2018. DoodleClassi�er. Website. Retrieved July 31, 2020 from
https://ml4a.github.io/guides/DoodleClassi�er/.

[12] Kevin Patrick Moran, Carlos Bernal-Cárdenas, Michael Curcio, Richard Bonett,
and Denys Poshyvanyk. 2018. Machine Learning-Based Prototyping of Graphical
User Interfaces for Mobile Apps. IEEE Transactions on Software Engineering 46, 2
(2018), 196–221.

[13] Mark W Newman and James A Landay. 2000. Sitemaps, storyboards, and speci�-
cations: a sketch of Web site design practice. In Proceedings of the 3rd conference
on Designing interactive systems: processes, practices, methods, and techniques.
ACM, New York, NY, 263–274.

[14] Tuan Anh Nguyen and Christoph Csallner. 2015. Reverse engineering mobile
application user interfaces with remaui (t). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, New York, NY, 248–
259.

[15] Jim Rudd, Ken Stern, and Scott Isensee. 1996. Low vs. high-�delity prototyping
debate. interactions 3, 1 (1996), 76–85.

[16] Markus Siering. 2017. Teaching a machine to convert wireframes into code.
Website. Retrieved July 31, 2020 from https://tech.xing.com/teaching-a-machine-
to-convert-wireframes-into-code-f9333e125e61.

[17] Sarah Suleri, Vinoth Pandian Sermuga Pandian, Svetlana Shishkovets, and
Matthias Jarke. 2019. Eve: A sketch-based software prototyping workbench.
In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing
Systems. ACM, New York, NY, 1–6.

[18] Uizard Technologies. 2019. Uizard. Website. Retrieved July 31, 2020 from
https://uizard.io/.

[19] Khoi Vinh. 2015. The Tools Designers Are Using Today. Website. Retrieved July
31, 2020 from http://tools.subtraction.com/.

[20] Benjamin Wilkins. 2017. Sketching Interfaces: Generating code from low �-
delity wireframes. Website. Retrieved July 31, 2020 from https://airbnb.design/
sketching-interfaces/.

https://www.cs.cmu.edu/~bam/uicourse/Buxton-SketchesPrototypes.pdf
https://sketch2code.azurewebsites.net/
https://ml4a.github.io/guides/DoodleClassifier/
https://tech.xing.com/teaching-a-machine-to-convert-wireframes-into-code-f9333e125e61
https://tech.xing.com/teaching-a-machine-to-convert-wireframes-into-code-f9333e125e61
https://uizard.io/
http://tools.subtraction.com/
https://airbnb.design/sketching-interfaces/
https://airbnb.design/sketching-interfaces/

	Abstract
	1 Introduction
	2 Related Work
	3 Architecture, Implementation and Functionality
	4 Tool Evaluation
	4.1 Study Design
	4.2 Evaluation Results

	5 Discussion and Conclusion
	5.1 Limitations and Future Work

	References

