
Measuring Mobile Text Entry Performance and Behaviour in the
Wild with a Serious Game

Christoph Wimmer, Richard Schlögl, Karin Kappel, Thomas Grechenig
TU Wien, Research Group for Industrial Software (INSO)

Vienna, Austria
christoph.wimmer|richard.schloegl|karin.kappel|thomas.grechenig@inso.tuwien.ac.at

ABSTRACT
Entering text is a fundamental part of howwe interact with comput-
ing devices. The predominant form of text input on smartphones
are virtual keyboards, which provide greater �exibility and cus-
tomization options compared to hardware keyboards. Mobile text
entry performance has been widely studied in HCI research, with
most experiments being conducted in a controlled, arti�cal lab en-
vironment. To escape the boundaries of the lab and observe mobile
text entry behaviour in a realistic and natural environment, we
developed and publicly released the game Hyper Typer on Google
Play Store. Hyper Typer is a serious research game for measuring
mobile text entry performance and behaviour on a large scale in
the real world. Publishing the game on Google Play Store resulted
in a total of 2,359 valid transcribed phrases with 71,963 keystrokes.
In this paper we discuss the game design of Hyper Typer, present
the results collected over a time period of one year after the re-
lease of the game and re�ect on the advantages, disadvantages and
challenges of deploying a research game publicly.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
Empirical studies in ubiquitous and mobile computing; Ubiquitous
and mobile computing design and evaluation methods.

KEYWORDS
Serious games; games with a purpose; text entry; text input; evalu-
ation methodology; crowd science.
ACM Reference Format:
ChristophWimmer, Richard Schlögl, Karin Kappel, Thomas Grechenig. 2019.
Measuring Mobile Text Entry Performance and Behaviour in the Wild with
a Serious Game. In MUM 2019: 18th International Conference on Mobile and
Ubiquitous Multimedia (MUM 2019), November 26–29, 2019, Pisa, Italy. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3365610.3365633

1 INTRODUCTION
Entering text is one of the most fundamental ways of how we
interact with our mobile devices. Many apps rely on text input in
order to ful�ll their purpose, be it to send a message, �ll out an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
MUM 2019, November 26–29, 2019, Pisa, Italy
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7624-2/19/11. . . $15.00
https://doi.org/10.1145/3365610.3365633

(a) Minuum

(b) MessagEase (c) 8pen

Figure 1: Examples of innovative and unconventional key-
board designs

input �eld in a form, edit documents or jot down a quick note. In
contrast to earlier generations of mobile devices which typically
featured physical buttons for text entry, the advent of touchscreens
on modern smartphones allows for more �exibility and with it a
proliferation of di�erent text entry methods as the means of text
entry are no longer bound to the physical shape and form of the
device.

Modern smartphone operating systems generally rely on virtual
software keyboards for text input on touchscreens. These virtual
keyboards can be easily customized or changed. Aside from Gboard,
the default Android keyboard provided by Google, many Android
device manufacturers such as Samsung, LG and Huawei ship their
own proprietary keyboard implementations with their Android
smartphones. Furthermore, as virtual keyboards are not bound
to one speci�c shape and form, many keyboard implementations
provide �ne-grained customization options to their users regarding
both appearance and behaviour.

In addition to this multitude of virtual keyboard designs provided
by smartphone manufacturers out of the box, the two dominant
smartphone operating systems in use today, Android and iOS, both
allow their users to swap text entry mechanisms according to their
preferences by downloading alternative virtual keyboards and other
text entry mechanisms from their respective app stores to replace

https://doi.org/10.1145/3365610.3365633
https://doi.org/10.1145/3365610.3365633

MUM 2019, November 26–29, 2019, Pisa, Italy C. Wimmer et al.

(a) Gboard usage data sharing setting

(b) SwiftKey usage data sharing opt-in

Figure 2: Examples of keyboard usage data sharing

the default implementations. Even though the default virtual key-
boards included on today’s smartphones are rather similar designs
based on the QWERTY layout and variations thereof, the �exibil-
ity a�orded by the proliferation of virtual keyboards has proven a
fertile ground for unconventional and innovative text entry mecha-
nisms such as Minuum [42] (see Figure 1a) or MessagEase [5] (see
Figure 1b). Furthermore there are text entry mechanisms which
eschew the predominant keyboard metaphor entirely such as hand-
writing recognition and gestural input, e.g. 8pen [39] (see Figure
1c).

However, this abundance of choice available on modern smart-
phones raises the question of how to assess the utility and usability
of di�erent text entry mechanisms and whether they provide a
tangible bene�t to users. Detailed usage metrics and performance
measures may be readily available to platform providers and key-
board developers, as many of these text entry mechanisms collect
usage data and statistics on behalf of their developers (e.g. Google
Gboard or Microsoft SwiftKey, see Figures 2a and 2b). Some of them
even expose certain usage data to their users such as Microsoft
SwiftKey. However, this usage data on text entry behaviour and
performance can be hard to come by for independent researchers.

For this reason and in order to gain a better understanding of
real-world text entry performance in a natural setting we developed
a serious game named Hyper Typer [32]. Hyper Typer is a mobile
typing game for Android devices with the purpose of collecting text
entry performance data from players of the game on an ongoing
basis and without direct supervision for exploratory data analysis.
In contrast to a controlled lab experiment, players of Hyper Typer
can play the game voluntarily whenever they feel motivated, in
their natural environment and on their personal mobile device with

all their text entry and keyboard settings intact as they are used
to. In this paper we expand our previous work introducing Hyper
Typer [33] with �ndings from more extensive evaluation.

2 RELATEDWORK
Empirical studies and experiments in the �eld of HCI research typi-
cally require volunteers and it can be challenging for scientists and
researchers to recruit a su�cient number of participants. To address
this challenge, some researchers have turned to crowdsourcing for
recruiting participants on platforms such as Amazon Mechanical
Turk [6, 17]. Serious games for research are a promising crowd-
sourcing approach for turning players into voluntary participants
in experiments and �eld studies by incentivizing their participation
with entertaining and engaging gameplay. For this approach to be
successful, it is necessary that the tasks presented to participants
can be embedded in fun and engaging gameplay mechanics.

2.1 Serious Games
Serious games are games designed for a primary purpose other
than pure entertainment [27]. As such, serious games feature both
a game dimension and a serious dimension, whereas pure entertain-
ment games consist only of a game dimension. Serious games have
been developed for a wide and diverse range of purposes across
di�erent domains such as healthcare games, educational games,
corporate games, political games, advertising games as well as re-
search games [4]. While the entertainment purpose of a serious
game is to the immediate bene�t of the player, the desired serious
purpose can be either bene�cial to the players of the game (e.g. by
improving learning success in case of an educational game or for
rehabilitation purposes in case of a healthcare game), to the devel-
opers and publishers of a game (e.g. by communicating a message
in case of a political or advertising game) or both.

A concept related to serious games are games with a purpose
(GWAPs). While the name itself implies that GWAPs closely align
with the de�nition of "games that do not have entertainment, enjoy-
ment or fun as their primary purpose" [27], the term was initially
introduced with a narrower and more speci�c de�nition of mean-
ing, originally referring to games "in which people, as a side e�ect
of playing, perform tasks computers are unable to perform" [41]. By
this de�nition, GWAPs should be considered a speci�c subcategory
within the broad �eld of serious games. Hyper Typer as a research
game for data collection can be considered both a serious game as
well as a game with a purpose, as its purpose is to collect empirical
data which cannot be obtained without human participation.

Typing games are a niche in the overall video game market, both
on desktop PC as well as on mobile devices such as smartphones.
Typing games typically aim to both entertain their players and help
them improve their typing skills in a fun and motivating way. As
such, many typing games qualify as serious games as they often
serve an educational or training purpose. Typing games have been
used for scienti�c and research purposes. Kristensson and Zhai [19]
developed a game to teach users shape writing, a text entry tech-
nique where users draw shapes which connect all the letters in the
desired word across a graphical representation of a keyboard. Rud-
chenko et al. [31] developed Text Text Revolution, a typing game
to provide targeting practice to users and generate training data for

Measuring Mobile Text Entry Performance and Behaviour with a Serious Game MUM 2019, November 26–29, 2019, Pisa, Italy

key-target resizing as a side e�ect of playing the game. Through
a user study and simulation experiment they demonstrated that
participants improved in accuracy over time and that the training
data for key-target resizing could be used to reduce error rate by
21.4 %. Henze et al. [13] employed a typing game to collect more
than 47 million keystroke events from 72,945 installations. They
used this data to identify a systematic skew and derived a function
to compensate for it by shifting touch events. Vertanen et al. [40]
developed Text Blaster, a multiplayer shoot’em up game where
players type sentences on a mobile device’s touchscreen keyboard,
intended to investigate performance and design aspects of touch-
screen text entry mechanisms. They found that the competitive
nature of gameplay encouraged players to enter text both quickly
and accurately and hypothesized "that these properties might make
Text Blaster an ideal platform for conducting both laboratory and
crowdsourced text entry experiments".

2.2 Large-scale HCI Experiments
Beyond the typing game genre, prior studies have employed serious
research games and apps released publicly on app stores to conduct
large-scale HCI experiments or collect data in the �eld. Henze et al
[11] used a game to evaluate three visualization techniques for o�-
screen objects from 3,934 installations. Henze et al. [12] later used
the touch-targeting game Hit It! to collect more than 120 million
touch events from 91,731 installations to determine error rates
for di�erent target sizes and screen locations, �nding that touch
positions are systematically skewed and deriving a compensation
function based on this data. The game Hit It! was also used in a
number of additional studies and experiments [8].

Releasing and disseminating an app for research purposes through
open marketplaces such as the Apple App Store or Google Play
Store is fraught with its own challenges and a number of case
studies report on the varying successes and failures experienced
by researchers in this endeavor. McMillan et al. [24] re�ected on
their experiences in running a large-scale trial of a mobile game
with more than 40,000 users on the Apple App Store and discussed
bene�ts and potential shortcomings. Theywarned researchers inter-
ested in their approach to "[e]xpect low percentages of uptake and
participation" and o�ered guidance on how to manage a large and
disparate user base. McMillan et al. [25] later compared di�erent
software distribution methods via the o�cial Apple App Store and
third party software repositories. Henze et al. [10] re�ected on �ve
experiments conducted by publishing apps on the Android Market
and identi�ed factors that account for the success of experiments
using mobile app stores. They concluded that "experiments in the
market allow to gain insight that otherwise would only be possible
to obtain with an enormous amount of e�ort" but caution that such
e�orts are not automatically successful.

The use of research apps publicly released on app stores raises
questions regarding the validity of results, both internal and ex-
ternal [8–10]. Just as HCI research experiments in general, studies
and experiments concerning text entry performance evaluation are
commonly conducted in a controlled environment such as a lab
setting. This approach increases internal validity, as researchers are
better able to control confounding factors such as environmental
conditions, leading to more reliable results. However, the downside

to this approach is that it can limit external validity, meaning the
generalizability of results to real contexts beyond the arti�cial, con-
trolled environment of the experiment. Henze et al. caution that
"[e]xperiments [...] can have a high internal validity and be very
reliable without necessarily having much to do with humans’ real
life behaviour" [8] and have argued that "applications evaluated in
mobile application stores reach a large number of users that use the
App in "natural" settings" [10] and "that app stores are powerful
tools for increasing the ability to generalize results when studying
mobile and pervasive systems" [9].

Large scale user studies using publicly released apps raise ques-
tions regarding ethical issues [26, 28] aswell. In linewith recommen-
dations found in literature [28] and to meet our ethical obligations
towards participants, we limit data collection to anonymous data.
Participants are noti�ed of their participation in a research project
and what data is collected when �rst starting the app in order to
gain their informed consent. Data collection is limited to as much
as necessary and as little as possible to reach our research goals.

3 GAME DESIGN AND IMPLEMENTATION
The game design of Hyper Typer was guided and informed by game
design theory such as the MDA framework [14] and the Human
Computing to Video Games (HCtVG) model [3], existing typing
games such as TypeRacer [38] and ZType [37] and established
research best practices for text entry evaluation in general [18, 23,
29, 35] and speci�cally on mobile devices [1, 2, 16, 21, 30].

Hyper Typer aims to bene�t both the players of the game as
well as researchers: Aside from its entertainment purpose, Hyper
Typer allows players to improve their typing skills through prac-
tice and to assess their text entry performance in a quanti�able
way by means of a scoring mechanism that takes both text entry
speed as well as accuracy into account. In addition, the detailed
measurement of text entry performance allows researchers to gain
a better understanding of real world text entry performance from a
large number of players across a variety of di�erent devices and
text entry mechanisms.

3.1 Design Process and Design Considerations
The design and development of a serious game can be challenging
as it requires a broad and diverse set of skills. As mentioned, serious
games comprise of both a game dimension and a serious dimension,
and designing a serious game for research purposes thus not only
requires pro�ciency in research methodology, but in game design
as well. When designing serious games for research purposes it is
necessary to align the research objectives with the game design
and that the tasks to be completed by the player can be embedded
in fun and engaging gameplay mechanics.

The HCtVG model for integrating human computing into video
games [3] suggests a process that begins with the deconstruction
of research objectives into desired outputs before integrating the
research activity into the game loops. The desired outputs for Hyper
Typer are performance measures of text entry performance such as
words per minute and error rate, which are well established in the
literature and related work on text entry experiments. The design
of Hyper Typer and its core gameplay loop was primarily informed

MUM 2019, November 26–29, 2019, Pisa, Italy C. Wimmer et al.

by the design of existing text entry experiments and associated
recommendations [1, 2, 18, 23, 29, 35].

The primary purpose of Hyper Typer is the ongoing collection
of real-world data and performance measures of typing behaviour
without direct supervision of study participants. To achieve this
goal, the game was designed to be self-explanatory and suitable for
unsupervised use and public dissemination on app stores in order
to reach as many players as possible. Nevertheless, the game can
also be used for conducting lab experiments in a controlled setting.

Text entry experiments generally task their participants with
transcribing a number of prede�ned phrases chosen from a repre-
sentative phrase set "as quickly and as accurately as possible" [18].
As such, the core task embedded in the game design is the transcrip-
tion of prede�ned phrases. This transcription task is similar to the
core gameplay loop of many existing typing games and as such has
proven itself to be suitable for this kind of game. All subsequent
design decisions were informed by this core transcription task and
where trade-o�s between experiment design and game design were
necessary, decisions were favored that maintained the integrity of
the research objective to ensure the validity of the collected data.

Text entry experiments typically require participants to enter
more than a single phrase in order to gather a su�cient amount of
data for subsequent analysis (e.g. 10 phrases per condition across
three conditions for a total of 30 phrases per participant in [1] and
[2]). As such, the structure of the game should also incentivize
players to transcribe multiple phrases. On the other hand, mobile
smartphone games generally favor a structure which enables short
bursts of gameplay to allow for spontaneous, intermediate play in
a variety of everyday situations without placing undue burden on
the player. To balance this trade-o�, Hyper Typer was designed
to require players to transcribe only a relatively small number
of phrases consecutively in order to �nish a game round. This
allows players to �nish a single game round within a few minutes.
However, to encourage players to return to the game for repeated
play and thus provide more substantial amounts of data, the game
employs mechanisms such as highscore lists and achievements with
the intention of providing additional goals and thus motivation for
players to keep playing.

To support realistic text entry behaviour, Wobbrock [23] de-
scribes three requirements for the unconstrained text entry evalua-
tion paradigm [35, 43]:

• All printable characters are accepted as legitimate input
during transcription. This requirement speci�cally allows
for entering incorrect characters.

• Using backspace is the only means of correcting errors.
• No error beeps or other intrusions a�ect text entry.

Some existing typing games violate these requirements by disal-
lowing incorrect input [38], ignoring incorrect characters [37] or
otherwise limiting error correction mechanisms. Rudchenko et al.
[31] observed that typing games which force players to enter the
correct input in order to progress tend to in�uence the player’s
behaviour to slow down and type more carefully. To ensure realistic
and natural typing behaviour in Hyper Typer, the game adopts the
unconstrained text entry evaluation paradigm. Players are allowed
to enter incorrect characters and they can correct these errors using
the backspace key. No intrusive feedback regarding the correctness

of input is provided during the transcription task and feedback is
delayed until the player has �nished the transcription of a phrase.

Hyper Typer presents players with their familiar Android device
keyboard as con�gured in the Android system settings and keeps
all their preferences and con�guration options intact. This is in
contrast to some other studies [13] and typing games (e.g. ZType
[37]), which provide their own custom keyboard implementation
for text entry. Henze et al. [13] speci�cally mention that in order to
"increase the study’s internal validity, the same keyboard is used for
all devices" and they created their own keyboard implementation
based on the standard Android keyboard for this purpose. The de-
velopment of a custom keyboard grants game designers, developers
as well as researchers more �ne-grained control by providing a
standardized, uniform method of text entry for players. However,
providing a custom keyboard implementation has a high risk that
players might be unfamiliar with the presented keyboard, forcing
them to adapt to the new keyboard and thus negatively impacting
their text entry performance. In addition, custom keyboards are
sometimes limited to speci�c layouts such as the QWERTY layout,
which may be challenging for players unfamiliar with the presented
layout. As such, providing a custom keyboard implementation is
contrary to our stated purpose of collecting data about realistic
and natural typing behaviour. For this reason Hyper Typer adopts
the opposite approach of presenting players with their familiar
Android device keyboard in order to increase the external validity
of collected data, even though this approach forces us to relinquish
some control over the study setup. Moreover, with our approach
measures can be gathered for a variety of text entry mechanisms
available on a player’s device, not just the one provided by the app.

In order to reach an international audience, phrase sets for tran-
scription in di�erent languages were required. MacKenzie and
Soukore� [22] suggest that phrases for text entry evaluation should
be "moderate in length, easy to remember, and representative of
the target language". While a number of established, curated phrase
sets for text entry evaluation exist [18, 22], the availability of phrase
sets in languages other than English is limited. To overcome this
limitation, phrase sets in four languages (English, German, French
and Spanish) were sampled from transcriptions of the European
Parliament using the method described by Leiva et al. [20] for in-
clusion in the game. Using this method, phrase sets in additional
languages can be created and the architecture of the game allows
for additional phrase sets to be added remotely and downloaded in
the background before a new game is started. The language of the
presented phrases is matched to the device language setting, with
English chosen as a fallback if no matching phrase set is available.

3.2 Gameplay
Hyper Typer is a futuristic racing game set in a science �ction
setting. The game is a single player game which challenges players
to compete in an intergalactic spaceship race against computer-
controlled opponents. This genre was chosen because racing games
are generally a mostly non-violent, yet competitive genre that cre-
ates a sense of urgency and motivates players to complete a task as
quickly and error-free as possible, which matches the desired ob-
jectives for the transcription tasks. The science �ction setting was
chosen because it is a common setting in commercial video games

Measuring Mobile Text Entry Performance and Behaviour with a Serious Game MUM 2019, November 26–29, 2019, Pisa, Italy

(a) Main Menu (b) Ship Selection (c) Gameplay (d) Highscores

(e) Disclosure (f) Tutorial (g) Global Leaderboard (h) Achievements

Figure 3: Screenshots of Hyper Typer

and provides game designers with considerable artistic freedom in
their design as they are not bound by the limits of realism imposed
by a realistic contemporary or historical setting.

Upon launching the game for the �rst time, players are presented
with a modal dialogue screen (see Figure 3e) disclosing the game’s
research purpose, that by playing the game they are participating
in a study and about the data collected by the app. After consenting
to this disclosure screen, players are automatically presented with
a short tutorial (see Figure 3f), providing instructions on how to
play the game. This tutorial is only automatically shown when the
game is started for the �rst time to avoid friction for recurring
players, but can subsequently be accessed from the main menu in
case players need help or instructions at a later time. This tutorial
serves a crucial purpose in providing guidance and instructions to

�rst-time players due to the nature of the public distribution and
unsupervised usage of the game.

After accepting the disclosure dialogue and �nishing the tuto-
rial, players are presented with the main menu of the game (see
Figure 3a), where they can start playing a new game, view the high-
score list, achievements and global leaderboard, access the tutorial,
change game settings or log in and out of Google Play services.
Upon subsequent launches of the game after the �rst launch, play-
ers are directly presented with this main menu without further
interruption from the disclosure screen or tutorial.

When a player starts a new game, they are �rst presented with
the ship selection screen (see Figure 3b), where they can select one
of six space ships. Initially only one ship model is available and ad-
ditional ship models can be unlocked by completing achievements.

MUM 2019, November 26–29, 2019, Pisa, Italy C. Wimmer et al.

The di�erent ship models only di�er in their visual appearance
and are purely cosmetic, that is to say, they provide no gameplay
bene�ts or advantages to the player. After selecting a space ship
model, the actual gameplay portion of the game begins.

Gameplay is structured around competitive races against com-
puter controlled opponents, where each race consists of four indi-
vidual stages. A single stage corresponds to the transcription of a
single phrase. The game presents the phrase to be transcribed on
the top of the screen and the keyboard in the bottom part of the
screen (see Figure 3c). In addition, the player’s current typing speed
in ���, their position relative to computer-controlled opponents
and their overall progress through the stages of a race are shown to
provide feedback on a player’s performance and progress. Players
are challenged to transcribe the presented text as quickly and error-
free as possible (the core mechanic of the game) in order to beat
their opponents and achieve a highscore. The scoring mechanism
takes both speed and error rate into account for calculating a score
in order to motivate players to type both quickly and error-free.
Players are also explicitly instructed to enter text as quickly and
accurately as possible as part of the tutorial of the game.

While Hyper Typer is a single player game, online highscore
leaderboards encourage a sense of competition among the player-
base. The game keeps two separate highscore lists: a global leader-
board (see Figure 3g), which requires players to use a Google Play
account in order to participate, and a local highscore list (see Figure
3d), which is only stored on the player’s device, to motivate play-
ers without a Google Play account. In addition, the game features
achievements implemented via Google Play Services (see Figure
3h) and unlockable ship models (see Figure 3b), as an additional
motivational a�ordance. Unlocking additional ship models is tied
to unlocking speci�c achievements.

3.3 Measures and Data Collection
Before displaying themainmenu for the �rst time, the game informs
players about its research purpose and collected data in order to
gain informed consent from players. The game collects data about
device characteristics, typing performance and player behaviour.
A unique installation identi�er is created when �rst starting the
app. In addition, the device model, a keyboard identi�er, Android
SDK version and whether the game was paused are logged for each
game round played. No personal information is collected by the
game.

The game calculates the following performance measures for
text entry speed, error rate metrics and e�ciency (for a detailed
description see [23]):

• Words per Minute (���): Measure of entry rate, based on
common assumption that one word consists of 5 characters.

• Adjusted Words per Minute (���.���): Adjusted ��� entry
rate penalized by uncorrected errors. A penalty exponent of
1.0 is used in our calculation.

• Total Error Rate (���): Proportion of incorrect-not-�xed and
incorrect-�xed characters to the total number of characters
entered, equal to the sum of corrected and uncorrected error
rates.

• Corrected Error Rate (���): Proportion of incorrect-�xed
characters to the total number of characters entered.

• Uncorrected Error Rate (���): Proportion of incorrect-not-
�xed characters to the total number of characters entered.

• Keystrokes per Character (����): Ratio of the number of
entered characters (including backspaces) to the number of
characters in the transcribed string.

• Minimum String Distance (���): Distance de�ned as lowest
number of error-correction operations required to transform
one string into another.

• Correction E�ciency (��): Ratio of incorrect-�xed characters
to the number of keystrokes that correct them.

• Participant Conscientiousness (��): Proportion of the num-
ber of corrected errors to the total number of errors.

• Utilized Bandwidth (��): Proportion of keystrokes that con-
tribute to the correct aspects of the transcribed string.

• Wasted Bandwidth (��): Proportion of keystrokes that do
not contribute to the correct aspects of the transcribed string,
the complement to utilized bandwidth.

Most of these metrics are not exposed to players within the game
as they might be confusing for a general audience unfamiliar with
the intricacies of text entry evaluation. Only the ��� metric is
exposed to players because it is relatively easy to understand and a
common feedback mechanism in other typing games. In addition,
an overall score calculated by the game that takes both typing speed
and uncorrected error rate into account is presented to players. This
overall score is also used for ranking in the highscore list and global
leaderboard.

In addition to these metrics, the game stores both presented text
and transcribed text for each phrase and collects a time-stamped log
of all keyboard input events for detailed character-level analysis.

The comprehensive nature of data collection allows the post-hoc
calculation of additional text entry performance measures on the
server-side. For example, Zhang et al. [44] recently published text
entry throughput ���, a performance measure of input e�ciency
which uni�es the speed-accuracy trade o� in a single metric. While
Hyper Typer originally did not calculate text entry throughput as it
was published after the app’s release, we were able to use Zhang’s
procedure to retroactively calculate text entry throughput for our
data set.

Collected data is sent in JSON format via REST API and stored
in a PostgreSQL database. All data is transferred in the background
without player interference. In case of the device being o�ine, data
transmissions are queued in the background and resumed at a later
time when connectivity has been restored.

3.4 Development, Testing and Release
Hyper Typer consists of a Unity container embedded in an Android
application. In order to speed up development, 3rd party assets
from the Unity Asset Store were used. Experiment parameters
are remotely con�gurable through Firebase without requiring the
player to update the app. Experiment parameters include the phrase
sets, the number of presented phrases per game round, whether
the presented text should be in mixed or lower case and whether
auto-correction and auto-completion features should be activated
or not. The remote con�guration can be identical for all participants
or partitioned as an A/B test.

Measuring Mobile Text Entry Performance and Behaviour with a Serious Game MUM 2019, November 26–29, 2019, Pisa, Italy

Name Count Percentage

Samsung Keyboard 155 49.05
Android Default Keyboard 69 21.84
SwiftKey Keyboard 28 8.86
Touchpal Keyboard 13 4.11
Swype for Huawei 11 3.48
LG Keyboard 8 2.53
Others 27 8.54

Total 316
Table 1: Distribution of text entry mechanisms

For the initial release, the game was con�gured to only present
phrases in lowercase letters without special characters and to deac-
tivate auto-correction and auto-completion features for text entry.

Before its public release, Hyper Typer was tested using the Ama-
zon Mechanical Turk platform. Ten participants were recruited to
download and play the game �ve times, with each game round con-
sisting of four stages. No further explanation of the gamemechanics
was provided in order to gather insights on the comprehensibility
of the game design. All participants in the testing phase were able
to complete the given task within 18 minutes or less. Five partic-
ipants provided written feedback which was uniformly positive
and indicated no problems of understanding or technical issues.
Following the successful testing phase, Hyper Typer was released
publicly on July 13th, 2018 on Google Play Store.

4 RESULTS
The following chapter presents the results of an exploratory anal-
ysis of the data collected through Hyper Typer over a time span
of one year, between its public release on July 13th, 2018 and July
12th, 2019.

4.1 Reach and Participation
Between its release and July 12th, 2019, the game was installed on
2,136 unique devices. Of those installations, 309 distinct installations
started the app and played at least one game round, resulting in a
total of 1,026 game rounds played, 4,104 phrases transcribed and
99,794 character input events recorded.

It can be assumed that the number of distinct, active installations
strongly correlates with the number of players of the game. How-
ever this cannot be guaranteed, as one person might have installed
the game multiple times or on multiple devices, resulting in multi-
ple installation IDs for a single participant, and one installation of
the game might have been shared among several people, con�ating
multiple players in a single installation ID.

Among those 309 active installations, 3.32 game rounds on aver-
age (SD = 10.15) were played. The high standard deviation is the
result of a small number of participants playing much more than
others, thus causing outliers, with one participant playing 144 game
rounds in total.

Highlighting the diversity of Android devices in use today, Hy-
per Typer was installed and played on 156 di�erent device models.
The most popular text entry mechanisms among the playerbase of

��� ���.��� ���

Mean 34.5 33.7 12.1
SD 12.3 12.0 4.28

��� ��� ���

Mean 7.48 5.27 2.21
SD 9.44 8.99 3.08

�� �� ��

Mean 0.547 0.889 0.111
SD 0.434 0.142 0.142

Table 2: Results across all valid transcribed phrases

Hyper Typer were the Samsung Keyboard (155 installations), fol-
lowed by Android Default Keyboard (69 installations), SwiftKey (28
installations), Touchpal (13 installations) and Swype for Huawei (11
installations), see Table 1. Themost common text entry mechanisms
were all similar variations of a rather conventional virtual software
keyboard design. There was great variety with a total of 27 di�erent
text entry mechanisms observed across the playerbase, with 15 of
those used by only a single player. The total number of observed
text entry mechanisms (n = 316) is slightly larger than the total
number of observed installations (n = 309) because some players
switched their text entry mechanism in between game rounds.

4.2 Data Cleansing
Due to the unsupervised and voluntary nature of gameplay, a large
amount of collected data was not usable for subsequent analysis,
e.g. because of transcriptions with no discernible relation to the
presented phrases or because players paused the game, thus dis-
torting time measurements. Based on thorough manual inspection
of the data, appropriate exclusion criteria were de�ned. To remove
garbage input, data from game rounds with a �nal score of 0 points
was excluded, resulting in a total of 615 usable game rounds. In
addition, transcribed phrases with an individual score of 0 were
also �ltered out. 10 game rounds were paused or interrupted and
later resumed and therefore also excluded from the results.

This data cleansing results in a total of 2,359 usable transcribed
phrases with 71,963 character input events. Of these 2,359 usable
transcribed phrases, 1,531 contained at least one error (corrected or
uncorrected), whereas 828 contained no error. This �nal data set af-
ter clean up contained data contributed by a total of 73 installations,
whereas 236 out of the total 309 active installations contributed no
usable data at all.

4.3 Analysis of Overall Text Entry Performance
To gain a comprehensive understanding of real-world text entry
performance among the Hyper Typer playerbase, all valid tran-
scribed phrases (n = 2,359) which remained after data cleansing
were analyzed. Average text entry speed ��� is 34.5 words per
minute (SD = 12.3) and ���.��� 33.7 words per minute (SD = 12.0)
when adjusting for uncorrected errors with a penalty exponent
of 1.0. Text entry throughput ��� is 12.1 (SD = 4.28). In compar-
ison, Castelluci et al. [1] report a text entry rate of 21.4 ��� on

MUM 2019, November 26–29, 2019, Pisa, Italy C. Wimmer et al.

0 20 40 60 80

wpm

de
ns
ity

(a) ���

0 20 40 60

ter
de
ns
ity

(b) ���

0 20 40 60

cer

de
ns
ity

(c) ���

0 5 10

uer

de
ns
ity

(d) ���

0 20 40 60 80

wpm_adjusted

de
ns
ity

(e) ���.���

0 10 20

throughput

de
ns
ity

(f) ���

0.00 0.25 0.50 0.75 1.00

pc_new

de
ns
ity

(g) ��

0.00 0.25 0.50 0.75 1.00

util_bandwidth

de
ns
ity

(h) ��

Figure 4: Distribution of collected measures across all valid transcribed phrases

a default Android keyboard . In a later study Castellucci et al. [2]
report text entry rates of 20.9��� for one-handed and 20.8��� for
two-handed input on a default Android keyboard. These numbers
are distinctly lower than our results. Reyal et al. [30] evaluated text
entry rates across �ve sessions for typing on the Google Gboard
keyboard in a lab experiment and an ESM study, reporting text
entry rates of 29.1 ��� (session 1) and 32.8 ��� (session 5) for
the lab experiment condition and 30.1 ��� (session 1) and 31.1
��� (session 5) for the ESM study condition. While still lower than
our results, these numbers are closer to what we observed. Zhang
et al. [44] report text entry rates of 51.91 ��� for normal, 40.91
��� for accurate and 60.16 ��� for fast typing behaviour on the
Google Gboard keyboard with auto-correction and auto-completion
features turned o�. These results are higher than our �ndings.

Average error rates are total error rate ��� 7.48 % (SD = 9.44),
corrected error rate ��� 5.27 % (SD = 8.99) and uncorrected error
rate ��� 2.21 % (SD = 3.08). In comparison, Castelluci et al. [1] report
a total error rate ��� of 11.8 % on a default Android keyboard . In a
later study Castellucci et al. [2] report total error rates ��� of 7.1
% for one-handed and 13.8 % for two-handed input on a default
Android keyboard. Zhang et al. [44] report uncorrected error rates
��� of 6.1 % for normal, 0.8 % for accurate and 12.2 % for fast typing
behaviour on the Google Gboard keyboard with auto-correction
and auto-completion features turned o�.

Taking into account only phrase transcriptions were an error
occurred (1,531), average participant conscientiousness �� is 0.547
(SD = 0.434). Average utilized bandwidth �� is 0.889 (SD = 0.142),
with wasted bandwidth �� its complement 0.111 (SD = 0.142).

Figure 4 illustrates the distribution of the collected measures
across all valid transcribed phrases. The distribution of participant

conscientiousness �� (see Figure 4g) is noteworthy with clusters
at the extremes of the distribution. More speci�cally, of the 1,531
phrases which contained errors, for 539 phrases (35.2 %) all errors
were corrected, for 527 phrases (34.4 %) no errors were corrected
and 465 phrases (30.4 %) were partially corrected. This suggests that
players adopted one of three possible error correction strategies
in similar proportions: either to correct all errors in a phrase, to
correct some errors, or to correct no errors at all.

To assess the overall e�ciency of the three di�erent error cor-
rection strategies, we compared text entry throughput ���. For this
analysis the data set is split in three groups: accurate (group A)
for phrases where all errors were corrected, fast (group F) where
no errors were corrected and neutral (group N) where some errors
were corrected. Phrases entered without error are �ltered for this
analysis as no deductions regarding a particular correction strategy
can be made. A comparison between the three groups showed a sig-
ni�cant e�ect of correction strategy on text entry throughput ���
(F(2, 989) = 92.1, p < 0.001). Group F had the highest ��� (M = 12.88,
SD = 4.13), followed by group A (M = 10.70, SD = 3.51) and group N
(M = 9.54, SD = 3.64). Pairwise comparisons using a Games-Howell
post-hoc test revealed a statistically signi�cant di�erence between
all groups (A - N: p < 0.001; A - F: p < 0.001; F - N: p < 0.001). This
is in line with results by Zhang et al. [44], who also found that an
accuracy-focused cognitive disposition results in lower text entry
throughput on smartphones, but not in desktop computing. These
results indicate that correcting errors is comparatively less e�cient
than ignoring errors in mobile text entry.

Measuring Mobile Text Entry Performance and Behaviour with a Serious Game MUM 2019, November 26–29, 2019, Pisa, Italy

4.4 Analysis by Keyboard
A comparison between the three most-used keyboards among
the playerbase (Android Default Keyboard, Samsung Keyboard,
SwiftKey Keyboard) of the game showed a signi�cant e�ect of key-
board type on text entry speed ��� (F(2,263) = 23.33, p < 0.001) as
well as total error rate ��� (F(2,264) = 13.97, p < 0.001), corrected
error rate ��� (F(2,267) = 4.68, p = 0.010) and uncorrected error rate
��� (F(2, 248) = 31.56, p < 0.001), see Table 3).

Players using the Android Default Keyboard had the fastest text
entry speed ��� (M = 37.00, SD = 11.18) compared to SwiftKey
(M = 34.50, SD = 11.44) and the Samsung Keyboard (M = 31.63,
SD = 11.50). Pairwise comparisons using a Games-Howell post-
hoc test revealed a statistically signi�cant di�erence between the
Android Default Keyboard and the Samsung Keyboard (p < 0.001),
but no signi�cant di�erence between Android Default Keyboard
and SwiftKey, and between SwiftKey and the Samsung Keyboard.

The Android Default Keyboard exhibited the lowest total error
rate ���, corrected error rate ��� and uncorrected error rate ���
(���: M = 6.11, SD = 8.98; ���: M = 4.45, SD = 8.56; ���: M = 1.66, SD
= 2.84) compared to SwiftKey (���: M = 8.51, SD = 8.20; ���: M = 4.53,
SD = 7.32; ���: M = 3.98, SD = 3.69) and the Samsung Keyboard (���:
M = 9.48, SD = 10.64; ���: M = 6.72, SD = 10.81; ���: M = 2.76, SD =
3.52). Pairwise comparisons of total error rate ��� using a Games-
Howell post-hoc test revealed statistically signi�cant di�erences
between the Android Default Keyboard and the Samsung Keyboard
(p < 0.001) as well as between the Android Default Keyboard and
SwiftKey (p = 0.006), but no signi�cant di�erence between SwiftKey
and the Samsung Keyboard. Pairwise comparisons of corrected
error rate ��� revealed a statistically signi�cant di�erence between
the Android Default Keyboard and the Samsung Keyboard (p =
0.007), but no others. Pairwise comparisons of uncorrected error
rate ��� revealed statistically signi�cant di�erences between all
three keyboards (Android Default - Samsung: p < 0.001; Android
Default - SwiftKey: p < 0.001; Samsung - SwiftKey: p = 0.008).

These results show the Android Default Keyboard performing
best regarding both speed and accuracy. However, it must be pointed
out that users of the Android Default Keyboard were much more
active players compared to users of the other two keyboards. Taking
into account players who contributed at least one valid transcrip-
tion, players using the Android Default Keyboard contributed an
average of 34.3 valid transcribed phrases compared to 15.6 valid
transcribed phrases per player for the Samsung Keyboard and 12.6
valid transcribed phrases per player for SwiftKey Keyboard. As such,
one possible explanation for performance di�erences between key-
boards is that players using the Android Default Keyboard were
more strongly motivated by the game, had more practice and thus
performed better.

4.5 Analysis by Language
To examine the e�ect of phrase set language on text entry speed
and error rates, we compared the English (n = 1,225) and German
(n = 1,115) language phrase sets. The French (n = 0) and Spanish
(n = 19) language phrase sets were excluded because they didn’t
produce su�cient data for analysis.

A Welch’s unequal variances t-test found a signi�cant e�ect of
phrase set language on text entry speed ��� (t(2,289) = 16.25, p <

Android Default Samsung SwiftKey p

n 1,339 235 126

��� 37.00 (11.1) 31.63 (11.50) 34.50 (11.44) <0.001
��� 6.11 (8.98) 9.48 (10.64) 8.51 (8.20) <0.001
��� 4.45 (8.56) 6.72 (10.81) 4.53 (7.32) =0.010
��� 1.66 (2.84) 2.76 (3.52) 3.98 (3.69) <0.001

Table 3: Performance by keyboard

English German p

n 1,225 1,115

��� 30.91 (11.28) 38.71 (11.89) <0.001
��� 7.59 (9.00) 7.29 (9.88) =0.454
��� 5.26 (8.42) 5.24 (9.54) =0.939
��� 2.32 (3.02) 2.06 (3.13) =0.038

Table 4: Performance by phrase set language

0.001), with ��� being signi�cantly higher in German (M = 38.71,
SD = 11.89) than English (M = 30.91, SD = 11.28).

A comparison of error rates using Welch’s unequal variances
t-test found a signi�cant di�erence between English (M = 2.32, SD
= 3.02) and German (M = 2.06, SD = 3.13) regarding uncorrected
error rate (t(2,298) = -2.08, p = 0.038), but no signi�cant e�ect of
language on total error rate ��� and corrected error rate ��� (see
Table 4).

The notable di�erence in text entry speed between English and
German language phrase sets warrants further consideration. One
possible cause is an inherent bias in phrase sets of di�erent lan-
guages, caused by the di�erent balance of words per phrase and
letters per word [7]. Another possible explanation is that there’s a
higher proportion of non-native English speakers among players
presented with the English phrase set as this phrase set is used as
a fallback if no phrase set in a matching language for the device
language setting is available. Isokoski and Linden [15] found that
text entry in a foreign language had a detrimental e�ect on both
speed and error rate.

5 DISCUSSION
The results demonstrate the feasibility of measuring text entry
performance with a serious game through public distribution on
Google Play Store. We believe that the data obtained through Hy-
per Typer is a good representation of realistic and natural typing
behaviour, as it resulted from volunteer participants entering text
on their own, personal device with their familiar text entry method
and preferences intact.

That being said, the collection of data without direct instructions
and supervision from researchers has its disadvantages where in-
ternal validity is concerned. Researchers have limited control over
how, when and where people participate. Participants might be
distracted or interrupted, operate the game in unforeseen ways or
misunderstand the instructions. Certain aspects of the study con-
ditions, such as the device and keyboard used for text entry, hand

MUM 2019, November 26–29, 2019, Pisa, Italy C. Wimmer et al.

position (e.g. one or two handed, left or right handed), participant
activity or context of use were outside our control.

In order to ensure the quality and integrity of the collected data,
certain collected usage characteristics such as device identi�er, key-
board type or pauses in gameplay can be used to reject inapplicable
or invalid results on a case by case basis. Beyond the usage charac-
teristics collected by Hyper Typer, additional sensor data such as
accelerometer data could be used to infer additional details about
usage context.

In addition, researchers have limited in�uence on sampling and
thus participants might not be representative of the general popula-
tion or a speci�c intended target audience. One particular concern
regarding the use of serious games for research purposes is that
they speci�cally target participants who are interested in playing
video games, whereas those parts of the population with no interest
in video games are largely excluded. This inherent bias must be
carefully considered by researchers.

The e�ort required for successful public release of a research
app must not be underestimated by researchers interested in the
endeavour. The robustness and level of polish required for an app
intended for public release and distribution is considerably higher
compared to a research prototype intended for internal use in a con-
trolled study environment. One speci�c challenge when releasing
an Android app is the wide variety of di�erent Android devices on
the market today, e.g. Hyper Typer was installed and played on 156
di�erent Android device models. This is an enormous challenge for
device compatibility testing. For example, despite comprehensive
testing on di�erent devices before public release, we only became
aware of a game-breaking layout bug related to certain screen as-
pect ratios of some Android devices months after release. Once
aware of the bug we were able to �x it by releasing an update to the
app. However, this kind of bug is not only frustrating for interested
players and limiting the game’s potential audience, but also carries
the risk of distorting the validity of collected data by excluding
certain groups from participating in the study.

Reaching an audience for the game has proven more challenging
than anticipated. Despite our best e�orts to make the game known
through word of mouth and online advertising e�orts, the game
never reached as many people as we hoped for and anticipated.
This issue could probably be remedied with more experience in
successful app marketing or more substantial advertising spending.
Furthermore, converting people who download the app into active
participants is another challenge. Of 2,136 total downloads only
309 played at least one game round, and only 73 installations (3.41
% of total installations) contributed usable data to our results. Re-
searchers interested in running public studies on app stores must be
aware that simply building an app and making it publicly available
is no guarantee for reaching an audience and should plan their
marketing and on-boarding activities from the outset.

The amount of data collected through Hyper Typer is relatively
large compared to some other lab-based experiments for mobile
text entry evaluation, but relatively small compared to other suc-
cessful deployments of serious research games on app stores (99,794
keyboard input events compared to e.g. 120,626,225 touch events in
[12] or 47,770,625 keystrokes in [13]). However, these earlier stud-
ies are several years in the past and the number of apps available
on Google Play Store has massively increased since then, from ca.

100,000 apps in October 2010 to ca. 2.7 million apps in June 2019
[36]. This increased competition is a possible explanation for our
di�culties in �nding a larger audience, as it is more di�cult to
stand out on the crowded storefronts of app stores today compared
to several years ago.

The amount of invalid data collected by the game warrants fur-
ther investigation. This could be a result of insu�cient instructions,
poor usability or disinterest of participants. In addition, speci�c
game design choices such as incentive structures and scoring mech-
anisms could distort the typing behaviour of players. To better
understand the e�ect of these issues we plan a comparative study
of data collected from unsupervised players and from a controlled
lab experiment in the future.

Our analysis of text entry performance based on data collected
through Hyper Typer is higher than the performance reported in
some earlier lab-based experiments [1, 2, 30], sometimes consider-
ably so. There are a number of possible explanations for this: Firstly,
it is possible that the familiarity with their own device positively
impacted players’ text entry performance. Secondly, it is possible
that the game more strongly motivated and incentivized players
to perform at their best compared to an arti�cal lab-based task.
Lastly, given that these earlier experiments are now several years
in the past, it is possible that advances in smartphone hardware
and software had a positive e�ect on text entry performance or that
people in general have become more adept at entering text using
virtual keyboards on a smartphone.

6 CONCLUSION
In this paper we present the design process and implementation de-
tails of our serious research game Hyper Typer and provide speci�c
recommendations and requirements for text entry evaluation in a
serious game. The game successfully ful�lls its purpose of gathering
comprehensive data about text entry performance and behaviour
from players for exploratory analysis. Following the public release
of the game, 4,104 transcribed phrases and 99,794 keyboard input
events from 309 active installations were collected over a one year
time span. We present the results of our exploratory analysis after
data cleansing, which reduced our data set to 2,359 valid transcribed
phrases and 71,963 keyboard input events. We re�ect on the experi-
ence and challenges in publicly releasing a serious research game
on app stores. In retrospect we consider our approach of using a
serious game to collect research data successful, but acknowledge
that additional e�orts to reach a wider audience are required for
this approach to reach its full potential.

Hyper Typer remains publicly available [32] and further dissem-
ination, data collection and exploratory data analysis are ongoing
e�orts. Furthermore, the con�guration options provided by the app
allow its use for exploring more focused research questions, such
as the e�ects of auto-correction and auto-completion features, the
in�uence of screen size on text entry performance or a comparison
of di�erent phrase sets. In addition, further internationalization,
especially beyond Latin-script alphabets, could extend the reach
and applicability of the game and would open up new research
questions for examination. Finally, in the spirit of open research
the raw data for this analysis is publicly available [34].

Measuring Mobile Text Entry Performance and Behaviour with a Serious Game MUM 2019, November 26–29, 2019, Pisa, Italy

REFERENCES
[1] Steven J. Castellucci and I. Scott Mackenzie. 2011. Gathering text entry metrics

on android devices. In CHI’11 Extended Abstracts on Human Factors in Computing
Systems. 1507–1512. https://doi.org/10.1145/1979742.1979799

[2] Steven J. Castellucci and I. Scott Mackenzie. 2013. Gathering Text Entry Metrics
on Android Devices. In Proceedings of the International Conference on Multimedia
and Human-Computer Interaction - MHCI 2013. 1–7.

[3] Corey Clark, Ira Greenberg, and Myque Ouellette. 2018. A model for integrating
human computing into commercial video games. 2018 IEEE 6th International
Conference on Serious Games and Applications for Health, SeGAH 2018 (2018), 1–8.
https://doi.org/10.1109/SeGAH.2018.8401316

[4] Damien Djaouti, Julian Alvarez, and Jean-Pierre Jessel. 2011. Classifying serious
games: the G/P/S model. In Handbook of research on improving learning and
motivation through educational games: Multidisciplinary approaches. 118–136.
https://doi.org/10.4324/9780203891650 arXiv:arXiv:1011.1669v3

[5] Exideas. 2018. MessagEase Keyboard. Retrieved August 16, 2019 from https:
//www.exideas.com/ME/.

[6] Leah Findlater, Joan Zhang, Jon E. Froehlich, and KarynMo�att. 2017. Di�erences
in Crowdsourced vs. Lab-based Mobile and Desktop Input Performance Data. In
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems -
CHI ’17. 6813–6824. https://doi.org/10.1145/3025453.3025820

[7] Marc Franco-Salvador and Luis A. Leiva. 2018. Multilingual phrase sampling
for text entry evaluations. International Journal of Human Computer Studies 113,
February 2017 (2018), 15–31. https://doi.org/10.1016/j.ijhcs.2018.01.006

[8] Niels Henze. 2012. Hit it!: an apparatus for upscaling mobile HCI studies. In
CHI ’12 Extended Abstracts on Human Factors in Computing Systems. 1333–1338.
https://doi.org/10.1145/2212776.2212450

[9] Niels Henze and Martin Pielot. 2013. App stores: external validity for mobile
HCI. Interactions 20, 2 (2013), 33–38. https://doi.org/10.1145/2427076.2427084

[10] Niels Henze, Martin Pielot, Benjamin Poppinga, Torben Schinke, and Susanne
Boll. 2011. My app is an experiment: Experience from user studies in mobile app
stores. International Journal of Mobile Human Computer Interaction (IJMHCI) 3, 4
(2011), 71–91.

[11] Niels Henze, Benjamin Poppinga, and Susanne Boll. 2010. Experiments in the
wild: Public evaluation of o�-screen visualizations in the Android Market. In Pro-
ceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending
Boundaries. 675–678. https://doi.org/10.1145/1868914.1869002

[12] Niels Henze, Enrico Rukzio, and Susanne Boll. 2011. 100,000,000 Taps: Analysis
and Improvement of Touch Performance in the Large. In Proceedings of the 13th
International Conference on Human Computer Interaction with Mobile Devices and
Services. 133–142.

[13] Niels Henze, Enrico Rukzio, and Susanne Boll. 2012. Observational and experimen-
tal investigation of typing behaviour using virtual keyboards for mobile devices.
In Proceedings of the 2012 ACM annual conference on Human Factors in Computing
Systems - CHI ’12. 2659–2668. https://doi.org/10.1145/2207676.2208658

[14] Robin Hunicke, Marc LeBlanc, and Robert Zubek. 2004. MDA: A Formal Approach
to Game Design and Game Research. InWorkshop on Challenges in Game AI. 1–4.
https://doi.org/10.1.1.79.4561

[15] Poika Isokoski and Timo Linden. 2004. E�ect of foreign language on text tran-
scription performance: Finns writing English. In Proceedings of the third Nordic
conference on Human-computer interaction. 109–112. https://doi.org/10.1145/
1028014.1028032

[16] Thomas Költringer and Thomas Grechenig. 2004. Comparing the Immediate
Usability of Gra�ti 2 and Virtual Keyboard. In CHI’04 Extended Abstracts on
Human Factors in Computing Systems. 1175–1178. https://doi.org/10.1145/985921.
986017

[17] Steven Komarov, Katharina Reinecke, and Krzysztof Z. Gajos. 2013. Crowd-
sourcing performance evaluations of user interfaces. In Proceedings of the
SIGCHI conference on human factors in computing systems. 207–216. https:
//doi.org/10.1145/2470654.2470684

[18] Per Ola Kristensson and Keith Vertanen. 2012. Performance comparisons of
phrase sets and presentation styles for text entry evaluations. In Proceedings
of the 2012 ACM international conference on Intelligent User Interfaces. 29–32.
https://doi.org/10.1145/2166966.2166972

[19] Per Ola Kristensson and Shumin Zhai. 2007. Learning shape writing by game
playing. In CHI ’07 Extended Abstracts on Human Factors in Computing Systems.
1971–1976. https://doi.org/10.1145/1240866.1240934

[20] Luis A. Leiva and Germán Sanchis-Trilles. 2014. Representatively memorable:
sampling the right phrase set to get the text entry experiment right. In Proceedings
of the 32nd annual ACM conference on Human factors in computing systems - CHI
’14. ACM Press, Toronto, Ontario, Canada, 1709–1712. https://doi.org/10.1145/
2556288.2557024

[21] I. Scott MacKenzie and R. William Soukore�. 2002. Text Entry for Mobile Com-
puting: Models and Methods,Theory and Practice. Human-Computer Interaction

17, 2-3 (2002), 147–198. https://doi.org/10.1080/07370024.2002.9667313
[22] I. Scott MacKenzie and R. William Soukore�. 2003. Phrase sets for evaluating text

entry techniques. In CHI’03 extended abstracts on Human factors in computing
systems. 754–755. https://doi.org/10.1145/765968.765971

[23] I. Scott MacKenzie and Kumiko Tanaka-Ishii. 2010. Text entry systems: Mobility,
accessibility, universality. Elsevier.

[24] Donald McMillan, Alistair Morrison, Owain Brown, Malcolm Hall, and Matthew
Chalmers. 2010. Further into the wild: Running worldwide trials of mobile
systems. In International Conference on Pervasive Computing, Vol. 6030 LNCS.
210–227. https://doi.org/10.1007/978-3-642-12654-3_13

[25] Donald McMillan, Alistair Morrison, and Matthew Chalmers. 2011. A Compari-
son of Distribution Channels for Large-Scale Deployments of iOS Applications.
International Journal of Mobile Human Computer Interaction (IJMHCI) 3, 4 (2011),
1–17. https://doi.org/10.4018/jmhci.2011100101

[26] Donald McMillan, Alistair Morrison, and Matthew Chalmers. 2013. Cate-
gorised ethical guidelines for large scale mobile HCI. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems - CHI ’13. 1853.
https://doi.org/10.1145/2470654.2466245

[27] David R. Michael and Sandra L. Chen. 2005. Serious Games: Games That Educate,
Train, and Inform. Muska & Lipman/Premier-Trade.

[28] Alistair Morrison, Donald McMillan, and Matthew Chalmers. 2014. Improving
consent in large scale mobile HCI through personalised representations of data. In
Proceedings of the 8th Nordic Conference on Human-Computer Interaction Fun, Fast,
Foundational - NordiCHI ’14. 471–480. https://doi.org/10.1145/2639189.2639239

[29] Ondrej Polacek, Adam J Sporka, and Brandon Butler. 2013. Improving the method-
ology of text entry experiments. In Cognitive Infocommunications (CogInfoCom),
2013 IEEE 4th International Conference on. IEEE, 155–160.

[30] Shyam Reyal, Shumin Zhai, and Per Ola Kristensson. 2015. Performance and
user experience of touchscreen and gesture keyboards in a lab setting and in
the wild. In Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems. 679–688. https://doi.org/10.1145/2702123.2702597

[31] Dmitry Rudchenko, Tim Paek, and Eric Badger. 2011. Text text revolution: A
game that improves text entry on mobile touchscreen keyboards. In International
Conference on Pervasive Computing., Vol. 6696 LNCS. 206–213. https://doi.org/
10.1007/978-3-642-21726-5_13

[32] Richard Schlögl, Christoph Wimmer, and Thomas Grechenig. 2018. Hyper Typer.
Google Play Store. Retrieved August 16, 2019 from https://play.google.com/store/
apps/details?id=at.hypertyper.

[33] Richard Schlögl, Christoph Wimmer, and Thomas Grechenig. 2019. Hyper Typer:
A Serious Game for Measuring Mobile Text Entry Performance in the Wild. In
Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing
Systems. ACM, LBW0259.

[34] Richard Schlögl, Christoph Wimmer, and Thomas Grechenig. 2019. Hyper Typer
Project Website. Website. Retrieved August 16, 2019 from https://deco.inso.
tuwien.ac.at/hypertyper/.

[35] R. William Soukore� and I. Scott MacKenzie. 2003. Metrics for text entry research-
an evaluation of MSD and KSPC, and a new uni�ed error metric. In Proceedings
of the conference on Human factors in computing systems - CHI ’03, Vol. 5. 113–120.
https://doi.org/10.1145/642611.642632

[36] Statista. 2019. Number of available applications in the Google Play
Store from December 2009 to June 2019. Website. Retrieved
August 16, 2019 from https://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/.

[37] Dominic Szablewski, Sebastian Gerhard, and Andreas Lösch. 2011. ZType. Web-
site. Retrieved August 16, 2019 from https://zty.pe/.

[38] Authors unknown. 2008. TypeRacer. Website. Retrieved August 16, 2019 from
https://play.typeracer.com/.

[39] Authors unknown. 2010. 8pen. Website. Retrieved August 16, 2019 from
http://www.8pen.com/.

[40] Keith Vertanen, Justin Emge, Haythem Memmi, and Per Ola Kristensson. 2014.
Text Blaster: A Multi-Player Touchscreen Typing Game. In CHI ’14 Extended
Abstracts on Human Factors in Computing Systems. 379–382. https://doi.org/10.
1145/2559206.2574802

[41] Luis von Ahn and Laura Dabbish. 2008. Designing Games With a Purpose.
Commun. ACM 51, 8 (2008), 58–67. https://doi.org/10.1145/1378704.1378719

[42] Whirlscape. 2013. Minuum Keyboard. Website. Retrieved August 16, 2019 from
http://minuum.com/.

[43] Jacob O. Wobbrock and Brad A. Myers. 2006. Analyzing the input stream for
character- level errors in unconstrained text entry evaluations. ACM Transactions
on Computer-Human Interaction 13, 4 (2006), 458–489. https://doi.org/10.1145/
1188816.1188819

[44] Mingrui "Ray" Zhang, Shumin Zhai, and Jacob O. Wobbrock. 2019. Text Entry
Throughput: Towards Unifying Speed and Accuracy in a Single Performance
Metric. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. 636.

https://doi.org/10.1145/1979742.1979799
https://doi.org/10.1109/SeGAH.2018.8401316
https://doi.org/10.4324/9780203891650
http://arxiv.org/abs/arXiv:1011.1669v3
https://www.exideas.com/ME/
https://www.exideas.com/ME/
https://doi.org/10.1145/3025453.3025820
https://doi.org/10.1016/j.ijhcs.2018.01.006
https://doi.org/10.1145/2212776.2212450
https://doi.org/10.1145/2427076.2427084
https://doi.org/10.1145/1868914.1869002
https://doi.org/10.1145/2207676.2208658
https://doi.org/10.1.1.79.4561
https://doi.org/10.1145/1028014.1028032
https://doi.org/10.1145/1028014.1028032
https://doi.org/10.1145/985921.986017
https://doi.org/10.1145/985921.986017
https://doi.org/10.1145/2470654.2470684
https://doi.org/10.1145/2470654.2470684
https://doi.org/10.1145/2166966.2166972
https://doi.org/10.1145/1240866.1240934
https://doi.org/10.1145/2556288.2557024
https://doi.org/10.1145/2556288.2557024
https://doi.org/10.1080/07370024.2002.9667313
https://doi.org/10.1145/765968.765971
https://doi.org/10.1007/978-3-642-12654-3_13
https://doi.org/10.4018/jmhci.2011100101
https://doi.org/10.1145/2470654.2466245
https://doi.org/10.1145/2639189.2639239
https://doi.org/10.1145/2702123.2702597
https://doi.org/10.1007/978-3-642-21726-5_13
https://doi.org/10.1007/978-3-642-21726-5_13
https://play.google.com/store/apps/details?id=at.hypertyper
https://play.google.com/store/apps/details?id=at.hypertyper
https://deco.inso.tuwien.ac.at/hypertyper/
https://deco.inso.tuwien.ac.at/hypertyper/
https://doi.org/10.1145/642611.642632
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://zty.pe/
https://play.typeracer.com/
http://www.8pen.com/
https://doi.org/10.1145/2559206.2574802
https://doi.org/10.1145/2559206.2574802
https://doi.org/10.1145/1378704.1378719
http://minuum.com/
https://doi.org/10.1145/1188816.1188819
https://doi.org/10.1145/1188816.1188819

	Abstract
	1 Introduction
	2 Related Work
	2.1 Serious Games
	2.2 Large-scale HCI Experiments

	3 Game Design and Implementation
	3.1 Design Process and Design Considerations
	3.2 Gameplay
	3.3 Measures and Data Collection
	3.4 Development, Testing and Release

	4 Results
	4.1 Reach and Participation
	4.2 Data Cleansing
	4.3 Analysis of Overall Text Entry Performance
	4.4 Analysis by Keyboard
	4.5 Analysis by Language

	5 Discussion
	6 Conclusion
	References

