
TwoStick: Writing with a Game Controller

Thomas Költringer , Poika Isokoskiξ, Thomas Grechenig
Vienna University of Technology

Research Group for Industrial Software (INSO)
Wiedner Hauptstrasse 76/2/2, 1040, Vienna, Austria

{thomas.koeltringer, thomas.grechenig}@inso.tuwien.ac.at

ξUniversity of Tampere
TAUCHI, Department of Computer Sciences
FIN-33014, University of Tampere, Finland

poika@cs.uta.fi

ABSTRACT
We report the design and evaluation of a novel game controller
text entry method called TwoStick. The design is based on the
review of previous work and several rounds of pilot testing. We
compared user performance with TwoStick experimentally to a
selection keyboard which is the de facto standard of game
controller text entry. Eight participants completed 20 fifteen-
minute sessions with both text entry methods. In the beginning
TwoStick was slower (4.3 wpm, uncorrected error rate = 0.68%)
than the selection keyboard (5.6 wpm, 0.85%). During the last
session TwoStick was faster (14.9 wpm, 0.86% vs. 12.9 wpm,
0.27%). Qualitative results indicated that TwoStick was more fun
and easier to use than the selection keyboard.

CR Categories: H.5.2 [Information Interfaces and Presentation]:
User Interfaces - Evaluation/Methodology, Input Devices and
Strategies.

Keywords: Text entry, game controller, gamepad, joystick,
selection keyboard, Quikwriting, TwoStick

1 INTRODUCTION
In the early 20th century the French aviator Robert Esnault-
Pelterie invented the joystick [24]. Since then, translation of
human will into machine movement via a stick has become widely
adopted. Nowadays airplanes, ships, mobile phones, game avatars,
and many other things are operated with joysticks.

The use of joysticks in computer games began early on. The
Atari 2600 from 1977 was an early gaming product with a
joystick. A joystick has been a standard part of game controllers at
least since Nintendo N64 launched in 1996. With the exception of
Nintendo Wii, the controllers shipped with popular game consoles
have designs similar to the Microsoft Xbox 360 controller shown
in Figure 1.

Game consoles are also used for other tasks besides gaming. In
some cases they are the main entertainment appliances in the
living room. Users of game consoles can access pictures, music
and movies. The consoles can also be connected to the Internet for
playing against remote opponents, for messaging, or for browsing
the web. Consequently, the game controller has become involved
in tasks for which it was not designed.

Most text entry methods for game consoles are adaptations of
methods that were originally developed for different input
devices. Maybe writing with a gamepad would be easier if we had
a text entry method that was designed for gamepad use.

In this paper we report our search for text entry methods for
gamepads. We were looking for methods that are fast to use and
easy to learn. First we summarize and discuss previous work.
Then we describe TwoStick, a new text entry method for
gamepads. After that, we report the results of an experiment

where we compare a gamepad operated QWERTY selection
keyboard and TwoStick.

2 GAME CONTROLLER TEXT ENTRY
In the beginning of computer gaming there were arcade games. In
1979 the game Asteroids introduced the feature to label the user’s
score in a high score list allowing players to compete for the
highest score. For entering the label the games used the date
stamp technique [11, 23] where the user scrolls through characters
and presses a button when the proper character is highlighted.

Nowadays, the typical text entry method for gamepads is an
onscreen selection keyboard [20, 23]. Usually the QWERTY or
alphabetic key layout is used. A selection keyboard is used by
moving the highlighted focus on the desired key and then
selecting that key. Usually a mini-stick or a directional pad (D-
pad) is used for movement, and a button for selection. Sometimes
most frequent characters are assigned to buttons to provide
shortcuts for entering them. Selection keyboards can be
cumbersome, because large distances have to be traversed
between some keys.

Recently Sony has shipped gaming devices (PlayStation 3,
PlayStation Portable) with a selection keyboard version of the
multi-tap text entry method used in mobile phones. Having fewer
keys reduces the distances to be traveled between the keys. The
cost of this reduction is the ambiguity arising from several
characters being associated with each key. Nintendo with the Wii
is shipping both, a QWERTY selection keyboard and a multi-tap
keyboard, letting the user choose the preferred method. According
to press releases [26] Sony and Nintendo are planning to add a
dictionary-based disambiguation technique to their systems for
faster text entry.

Wilson and Agrawala [20] proposed a partial solution to the
keyboard traversal problem by splitting the keyboard in two. Each
half had its dedicated cursor operated by its own mini-stick. Their
experiment showed that this solution was faster for novice users
than a non-split layout. They also found the QWERTY selection
keyboard layout to be faster than an alphabetic layout.

Text entry methods are provided by the operating system of the
game console. However, game producers can still implement
whatever they want within the games. Consequently, innovative
text entry methods have been implemented in games. For

A 0.5 inch (1.18 cm) space must be left at the bottom of the left
column on the first page (i.e., blank the text from this box8
before submitting).

Figure 1. Sketch of a Microsoft Xbox 360 game controller.

 Performance
Method Novices Training Experts Source

Quikwriting 4 wpm 5 hours 13 wpm [8]
Date Stamp 4.4-9.1 wpm - - [23,11]
MDITIM 5.6 wpm - - [5]
ABC skb 5.8 wpm - - [20]
QWERTY skb 6.2- 6.5wpm - - [23,20]
EdgeWrite 6.4 wpm unknown 11-14.7 [22,23]
Dual QWERTY 7.1 wpm - - [20]

Table 1. Performance of game controller compatible
text entry methods.

example, in the game Rainbow Six 3, characters are shown on a
circular menu and entered by deflecting the mini-stick to the
direction of a character and pressing a button. Unfortunately
mapping at minimum 28 characters (alphabet, space, backspace)
to a circular menu, results in narrow 12.9 degree menu slices. This
kind of accuracy is hard to achieve with a mini-stick.
Proschowsky et al. [15] had a similar problem when mapping a
keyboard to a click wheel (such as the wheel used in Apple
iPods). They alleviated the problem by supporting selection with a
predictive algorithm.

Isokoski and Raisamo [5] developed a gesture based device
independent text input method called MDITIM. The idea was to
design a gesture alphabet that could be used on different input
devices, including joysticks. The authors speculated that the
tactile feedback from the frame around a stick helps in gesture
input.

Wobbrock et al. [23] developed a gesture alphabet called
EdgeWrite that explicitly uses the edges of the stick movement as
input. Wobbrock et al. compared novice performance with date
stamp, selection keyboard, and EdgeWrite using one mini-stick on
a gamepad. After some training participants were faster with
EdgeWrite than with the other methods. Novice input with the
selection keyboard was nearly as fast as EdgeWrite. Users felt that
the keyboard was the slowest and most frustrating of all tested
methods. Edgewrite has been implemented on a multitude of input
devices. Using it is possible at least with keys, joysticks, styli and
trackballs.

Quikwriting [14] was originally developed for stylus use.
Isokoski and Raisamo [6] adapted Quikwriting for joystick use. At
the end of a 20-session experiment the participants achieved the
rate of 13 words per minute (wpm) with the mini-sticks on a game
controller (see Table 1). Isokoski and Raisamo concluded that
Quikwriting is not easy to learn, but with adequate training text
entry speed increases.

Microsoft XNav [7] is an adaptation of Quikwriting with an
alphabetical character layout. Whereas Quikwriting
implementations are mainly research prototypes, XNav is a more
deliberate implementation for industrial use. Perlin, the original
developer of Quikwriting has also presented ideas on how to
modify Quikwriting to better suit gamepad input [13]. It seems
that if the project had continued to a gamepad operated prototype,
the results might have been similar to our solution in this paper.
Neither Microsoft, nor Perlin have published results on the
performance of gamepad based Quikwriting derivatives.

Table 1 shows data on the performance of joystick-operated
text entry methods. The data for date stamp in [11] was measured
using keys, but we would expect similar performance with a stick.
The 14.7 wpm figure for joystick-operated EdgeWrite was
achieved by Wobbrock himself [22] after unknown amount of
training. The fastest participant in the Quikwriting experiment by
Isokoski and Raisamo achieved the rate of 17.8 wpm.

Other text entry systems such as T-Cube [18], KeyStick [8] and
Weegie [9] have been, or could easily be, adapted to joystick use.

Weegie uses two sticks to operate two different layouts which
may improve writing speed [20]. myText [2] and the
MobileQWERTY [12] are other commercially available methods
for joystick based text entry.

3 TWOSTICK
TwoStick is a novel text entry method for game controllers. The
idea of TwoStick was derived from Quikwriting [13, 14] and the
visual feedback resembles that of TNT [3]. The original
developers of Quikwriting [14] and others [6, 7] have noted that
using a stylus for Quikwriting is just one of the possibilities.
Quikwriting divides the input area into nine zones that are mapped
to nine tokens. Sequences of these tokens are translated to
characters. TwoStick operates with the same main concepts.

3.1 User’s View
In TwoStick the user is presented a character layout on a two level
grid (see Figure 2a). The grid consists of 9 zones each of which
consists of 9 sub-zones. In total there are 9x9=81 square shaped
sub-zones. Each sub-zone is associated with a character that can
be entered. The 9 zones are mapped to the 8 directions and the
center zone of a joystick (see Figure 2b). The first level zone
selection is mapped to one stick, and the second level character
selection is mapped to the other stick.

Figure 3 gives the example entering ‘t’ with TwoStick. In the
beginning both sticks are centered. Then, the lower-left zone
(zone 7) is selected with the zone selection stick. After this, the
character (‘t’ = sub-zone 2) is selected with the character selection
stick. The entry of the character happens when the character
selection stick returns to the center. As shown in Figure 3, the
highlighting on the display follows the stick movements making
the operation easy to follow.

Note that if the character selection stick has not been centered
before the zone selection stick is moved, the character selection
will retain its relative position. I.e. if a user has highlighted ‘t’ as
in Figure 3c and then moves the zone selection stick over zone 1,
nothing will be entered. Instead ‘b’ will be selected. This makes it
possible to correct zone selection errors before entering the
character but also makes it possible to make errors if the zone
selection stick is moved too soon.

This kind of interaction makes it inconvenient to have
characters at the centers of the first level zones. This results in
maximum number of 72 characters on the layout. Some of these,
as well as buttons on the gamepad can be used for mode changing.
Thus, the maximum number of characters is unlimited in theory.
However, accessing other than the 72 characters on the default
layout is difficult and time consuming.

To be able to place 81 characters on the layout we have
experimented with a version of TwoStick where characters are
selected as described above, but entered by pressing a button. We

10
00

a) The basic layout is
divided into zones and sub-
zones

b) Dimensions and zones of
the joysticks input area

Figure 2. TwoStick visualization and input plane

expected to gain more accuracy in entering characters. Informal
tests showed that users preferred the design without the need to
press the button. Consequently the design without button pressing
was selected for the experiment reported later in this paper.

3.2 Character Layout
An optimal layout for TwoStick would involve placing the most
frequent characters within one zone to reduce the amount of zone
changes. Such an optimization would result in a layout that is
more difficult to learn than an alphabetic ordering of the
characters. Walk-up usability is very important in text entry
methods. Consequently we chose an alphabetic layout.

The initial idea for the character layout was to arrange the
characters in the periphery of the input area as in Quikwriting [14]
(see Figure 4). This design would obviously waste some space.
Also, tests during the design phase showed that users preferred
upwards movements of the character selection stick sticks. We
concluded that it might be a good idea to place the alphabet on the
upper sub-zones (1, 2, 3) and the less frequently used characters
on the bottom (7, 8, 9). Following these decisions yielded most of
the layout shown in Figure 3.

For the shifting we decided to use the commonly used auto-
backshift mechanism. This means that when the first character
from the shifted layout is selected, the default layout
automatically shifts back. When a persistent shift is needed, the
user needs to enter the shift character twice. Returning from a
persistent shift happens by entering the shift character one more
time. The shift functionality for accessing other layouts was
placed in the bottom row of the central zone so that it would be
fast to use. Three layouts were used in addition to the default
layout seen in Figure 3. These are the upper case characters
(arrow up), symbols (Sym) and the international characters (Int’l).

Space can be entered in the central zone by selecting the sub-
zone on the right and backspace by selecting the sub-zone on the
left. After placing the most frequent non-alphabetic characters and
numbers on the main layout we still had some empty cells. This
space could be used for internationalization. For example, the
language-specific alphabet of many European languages would fit
in the remaining space. For our English layout we decided to add
space and backspace in every first level zone. These two
characters are needed very frequently in text entry. Having them
available without moving the zone selection stick should improve
performance and comfort of use. The symbols for space and
backspace were not shown outside the central zone to avoid
clutter, but the functionality was there.

3.3 Implementation Details
The dimensions of the areas shown in Figure 2b are a result of an
iterative design and testing cycle. More formal experiments could
help to further fine-tune the zone layout.

In our implementation zones are selected with the left stick and
sub-zones with the right stick.

Selection keyboards sometimes use buttons on the game
controller as shortcuts for space, backspace or shift. These
shortcuts could improve TwoStick performance as well, at least if
the thumbs do not need to leave the sticks to operate the buttons.
We used the buttons under the forefingers for shortcuts. Left
bumper button was used for backspace and the right bumper
button on for space.

3.4 Optimal Expert Behavior
Optimal error free use of TwoStick consists of the following
behaviors:
• Selecting zones and characters in parallel i.e. deflecting both

sticks at the same time. Only re-centering needs to be carried
out in the correct order with the zone stick being the last to
move.

• The motion of the zone stick towards the next zone starts
directly from the zone of the previous character without
returning to the center.

• If two consecutive characters are in the same left stick zone
only the character selection stick moves.

Hence, every character can be entered using two consecutive
stick movements. During the first movement one or two sticks are
moving. During the second movement only the character selection
stick moves. All movements are simple straight lines. At the end
of each movement the stick can either rest against the edge of its
movement area or be released in the center position. Such
movements should be very easy and fast

4 EXPERIMENT DESIGN
After completing the TwoStick design, we needed to select the
method of its evaluation. In general we have two ways of
evaluating text entry methods: experiments and modeling. If an
estimate on expert performance is needed, experiments are
expensive. Modeling, on the other hand is fairly inexpensive if a
valid model is available.

Looking at a mini-stick on a game controller we find edges and
springs influencing the interaction. Consequently there are doubts
regarding the validity of Fitts’ law and its derivatives (Steering,
Crossing, etc.) as tools for this task. Additionally the stick
movements needed for modeling TwoStick and its competitors
vary a lot. For example Quikwriting requires continuous gesturing
with round and pointed sweeps whereas the selection keyboards

a) TwoStick in neutral
position (both sticks)

b) zone 7 selected with
zone selection stick

c) sub-zone 2 is selected
with character selection stick

d) character selection
stick returns to center: “t”

Figure 3. Entering ‘t’ with TwoStick

Figure 4. Quikwriting layout that was used by Isokoski and Raisamo
(left) and XNav layout (right). The grey arrow represents the stroke

needed for entering the word ‘the’.

require straight line stick movements and button presses. To be
reliable, a model would need to be calibrated with realistic usage
data for each kind of stick movement. Given our limited resources
we opted to skip modeling and go directly into collecting data on
TwoStick text entry performance.

However, we still needed to select a representative technique to
compete with TwoStick in the experiment. In this section we
discuss the techniques that we considered.

4.1 Selection Keyboards
A selection keyboard is the de facto standard in gamepad text
entry. Therefore, a selection keyboard is an ideal candidate for a
comparison with TwoStick. From our perspective it is important
to have a baseline to compare with. Because no longitudinal data
for selection keyboard usage has been published, our experiment
would serve as a baseline measurement for this technique as well.

When selection keyboards are operated with a game controller
the interaction is split into navigating to a character and entering it
by pressing a button. To better understand selection keyboard
interaction, we implemented a generic selection keyboard module
in our text entry software package. In our implementation we used
the left stick for navigation and the A button (see Figure 1) on the
right for selecting a character.

Discrete jumping from key to key (i.e. cursor cannot be in
between keys) seems to be the dominant method for cursor
movement in commercial products. Regarding the number of
possible movement directions our informal pilot studies showed
that using 8-way navigation does not seem to work out even after
a long training (more than 10 hours). Alignment errors on the long
horizontal transitions make the cursor jump to a wrong line too
easily. This tends to cause delays that are longer than the savings
gained by the ability to move diagonally. Unfortunately, others
[20, 23] do not specify the way of navigation used in their
experiments. We assume that they used 4-way navigation.
Commercial products, like the Xbox 360 selection keyboard, use
4-way navigation.

According to our observations the navigation to a character in
selection keyboards happens as follows. If the character is in the
same row or column as the previous character, the stick is
deflected in the direction of the intended character. The selection
cursor keeps moving at a fixed rate until the stick is re-centered
when the target is met. When the character is not in the same line
or row the user has to make a turn. Ideally users do not re-center
the stick when turning, but move it directly to the next position.

The rate at which the cursor moves when the stick is fully
deflected is crucial to the maximal attainable text entry rate. If the
cursor moves slowly, high rates cannot be achieved. If the cursor
moves too fast, it is difficult to stop on the desired key. In our
software we used a movement rate of 150 ms per key.

Some selection keyboards allow wrapping, i.e. continuing the
movement over the edge of the layout so that the cursor upon

exiting on one side of the keyboard enters from the opposite side.
This provides a shortcut to the other side of the keyboard. We
supported wrapping in our implementation.

The number of steps between two characters is determined by
the layout. We used the QWERTY layout (see Figure 5). The
QWERTY layout is well known by most game console users.

A different kind of a shortcut can be implemented by mapping
some characters or functions to buttons on the gamepad. We
designed space (right bumper), backspace (left bumper) and shift
(Y) as button shortcuts.

4.2 Split Selection Keyboards
Split selection keyboards are interesting for comparing against
TwoStick, because for novice users they are faster [20] than
traditional selection keyboards. Wilson and Agrawala [20] report
that with some practice they could write at rates exceeding 13
wpm.

Our split selection keyboard implementation followed the
design reported by Wilson and Argwala [20]. Our experience was
consistent with earlier reports in that the split keyboard is faster
for novice mainly because fewer steps are needed to reach the
characters. There are cognitive costs due to the need to switch
attention between the two halves of the keyboard as well as
potential gains due to parallel operation of the sticks. Novice users
tended to enter characters sequentially and not make intentional
parallel movements of the sticks. After some training the split
selection keyboard was still faster, but we did not experience a big
difference compared to normal selection keyboard text entry
speed. Writing was cognitively more demanding, because of
having two foci of attention. These costs reduced the positive
effects of the split design (parallel movements, fewer steps).

4.3 Multi-Tap Selection Keyboard
Multi-tap selection keyboards mimic the well known multi-tap
text entry method used in mobile phones. Each button on the
selection keyboard is associated with more than one character. A
character is entered by pressing the associated key once for the
first character on the key, twice for the second, etc. If the next
character is on the same key, a segmentation technique is needed.
On mobile phones users usually have both time-out segmentation
(1.5 seconds [16]) and a segmentation key. Multi-tap selection
keyboards operate the same way except that a pointer on a virtual
keyboard is used instead of a finger on a physical keyboard.

While scientific publications on multi-tap selection keyboards
are missing, it appears that they are destined to be very slow text
entry techniques. Our preliminary experiments with our own
implementation left us mystified as to why console manufacturers
consider multi-tap selection keyboards worth implementing. One
possible explanation is their familiarity to mobile phone users, and
the consequent initial positive response from these users. As
mentioned in the introduction, some console manufacturers are
planning to add a dictionary based disambiguation and possibly
word prediction to their systems. These improvements might
make multi-tap selection keyboards at least competitive with other
methods. TwoStick could, of course, be enhanced with word
prediction as well.

4.4 Quikwriting
We also wanted to compare TwoStick to Quikwriting.
Quikwriting is the only method for which prior longitudinal data
in gamepad use was available.

Examples of Quikwriting input are shown in Figure 4. When
entering the letter ‘t’ with the XNav layout the user first selects
zone 7. The character is entered when the user returns to the
center zone (zone 5). To enter ‘h’ the user first enters zone 3 and
then continues to zone 2, because ‘h’ is in the upper field of zone

3. When the user moves the stick from zone 2 to zone 5 it will
result in ‘h’ being entered.

Every token on the layout can be entered by either moving the
stick in one zone and back or by entering a zone and navigating
through other zones and returning the stick to the center.

Quikwriting can be used with two sticks. Isokoski and Raisamo
[6] had a different layout with numbers and punctuation for the
second stick. However, they found that users did not use the
second stick much. Another way of utilizing the second stick in
Quikwriting is to use both sticks on the primary alphabetic layout.
The sticks can move in parallel as long as returning to the center
happens in the correct order of the characters to enter.

One of the authors spent several weeks (1-2 hours per day)
training with an implementation of two-stick Quikwriting. He did
reach higher speeds than with one-stick Quikwriting, but the
amount of training needed was a serious deterrent to
recommending two-stick Quikwriting as a general solution for
gamepad text entry.

Overall we concluded that single stick Quikwriting would be an
interesting competitor for TwoStick.

4.5 EdgeWrite
Joystick operated EdgeWrite outperforms a selection keyboard in
novice use and satisfaction [23]. EdgeWrite use has been studied
extensively. Therefore, although EdgeWrite is a serious contender
for TwoStick, doing yet another experiment with EdgeWrite is not
as interesting as for example experimenting with two-stick
Quickwriting would have been.

4.6 Dasher
Dasher [19] is a system where the user navigates through a tree

of all possible texts using a pointer. The Dasher display zooms
infinitely as the user steers the direction of the zoom. As
characters are passed on the way, they are saved, and thus text is
formed. Dasher is probably relatively fast in joystick use. Mouse
users have reached speeds exceeding 30 wpm. One could expect
that with a joystick at least 20 wpm is possible after sufficient
training.

We implemented a game controller mode for using the Dasher
implementation available on the web. Using Dasher with a
joystick is definitely possible. We did not train enough to know
the limits of our performance in gamepad operated Dasher
writing. Overall, Dasher was found to be a serious contender for
the fastest game controller compatible text entry method.

4.7 Selecting the Yard Stick
As described above, we had a number of text entry methods that
we should compare TwoStick with. Obviously one experiment
would not be sufficient for exhaustive ranking of all methods. We
wanted to conduct a longitudinal experiment and considered two
text entry methods to be the theoretical lower limit for how many
text entry methods should be included. Unfortunately, we also
considered it to be the practical upper limit. Longitudinal
experiment calls for a within-subjects design to achieve adequate
statistical power without needing to include too many participants.
We believe that learning three or more new text entry methods
would be too much to ask from our volunteer participants.

After a considerable debate, we ended up comparing a
traditional QWERTY selection keyboard with TwoStick.
Selection keyboards are the most widely used text entry method
for game controller text entry. This is a sufficient justification for
including selection keyboards in the experiment. The unfortunate
consequence is that several interesting comparisons were
excluded. However, the selection keyboard can work as a useful
yard-stick. The other methods can be compared according to their
performance relative to the selection keyboard. A method that is

50% faster than a selection keyboard is likely to be faster than
another method that is only 20% faster. Over time the number of
methods to compare to will explode. Conducting all comparisons
is not economically possible in the long run.

5 EVALUATION OF TWOSTICK
We decided to compare TwoStick to the QWERTY selection
keyboard. Our expectation was that QWERTY would be faster in
the beginning but that TwoStick would be quickly learned and
would, therefore, soon outperform the QWERTY selection
keyboard.

5.1 Participants
For the experiment we recruited 8 volunteer participants (4
female, 4 male, all right-handed) between 22 and 29 (mean =
24.4, SD = 2.3) years of age. None of the participants had
previous experience with TwoStick, but all used a desktop
QWERTY keyboard in their daily work. Five participants had
prior game controller experience (3 novices, 1 intermediate and 1
expert). Only one owned a game console, the others had only tried
a few times or played as a kid. The participants had good English
reading and writing skills, but they were not native English
speakers.

5.2 Apparatus
We conducted the tests in a laboratory using a standard desktop
computer. A Microsoft Xbox 360 controller for Windows served
as input device. We implemented TwoStick and the QWERTY
selection keyboard in C# using DirectInput. Both methods had
shortcut keys for backspace (left bumper), space (right bumper),
and shift (Y button). The resolution of the display was set to
1280x1024. The size of the smallest buttons was 40x40 pixels.
We used the Frutiger Roman font in 20 pt size for the key labels.

A separate application (TextTest 2.1.4 [21]) was used to present
the phrases to transcribe and save input stream for later analysis.
Furthermore, every text entry method generated a log file with all
button presses and stick movements. The arrangement of the
windows on the screen is shown in Figure 5. The results were
analyzed using a character-level error analyzer by Wobbrock et al.
(StreamAnalyzer 2.0.2 [21]) and custom made scripts.

5.3 Task
The task consisted of transcribing phrases presented on the
display. Entering a phrase was finished by entering the “enter”
character with the text entry method in use. Participants were

Figure 5. The display during the experiment. (The visualization of

the keyboard has been enlarged for a better presentation)

instructed to enter the text as fast as possible while not making too
many errors. They could correct errors using backspace, but were
allowed to leave errors in the transcription.

The phrases were selected in a random order from a phrase list
based on the 500 phrase list by Soukoreff and MacKenzie [10].
We modified the phrases by adding upper case characters and
punctuation where it seemed grammatically appropriate. The
reason of this modification was the increasing number of
publications arguing that transcribing text consisting only of lower
case alphabet is not representative for text entry in general [6, 25].

The corpus was in English but our participants were native
Finnish, German, Tamil and Telugu speakers. Isokoski and
Linden [4] showed that participants are faster when transcribing
text in their native language. However, in the interest of
maintaining compatibility with the majority of text entry work, we
decided to use the English language.

5.4 Procedure
Each participant completed 20 sessions of text transcription. Each
session consisted of two 15-minute sub-sessions. One sub-session
was for TwoStick and the other for selection keyboard text entry.
We counterbalanced the order of the text entry methods to
neutralize the effects of learning and fatigue. For each session half
of the participants began with one method and the other half with
the other. The TextTest application showed how many phrases
had been entered. Thus, the participants were able to observe the
development of their text entry speed at the end of each session.

The experiment started with an explanation of its purpose. After
this, a questionnaire for participant information and text entry
background was completed. Before the first use of each text entry
method, its use was explained orally to the participant.
Participants’ questions were answered, but they were not allowed
to use the systems before the first session began. After the first
session the participants were interviewed and they filled out a
questionnaire about their impressions on the text entry methods.

After the 15-minute TwoStick block in the last session the
visualization of the TwoStick layout was turned off and
participants were instructed to transcribe text for a further 10-
minutes. The participants could only see the presented and
transcribed text and the status display showing the shift mode.
Our purpose was to see if eyes-free use of TwoStick is possible.
The same questionnaire that was used at the end of the first
session was repeated at the end of the last session.

The experiment was designed to have the text entry method
(two levels) and the amount of training (20 levels) as the
independent variables. The dependent variables were text entry
rate and error rate (total, corrected, and uncorrected). The main
effects were tested using a 2x20 (method, session) repeated
measures ANOVA. Further pair-wise comparisons were done
using paired samples t-tests. Questionnaire ratings were compared
using the non-parametric Wilcoxon’s signed ranks test.

6 RESULTS

6.1 About the Data
The participants transcribed in total 8,853 phrases over 74.87
hours, which resulted in 297,485 characters in the input stream for
further analyses.

Sometimes during the transcription participants accidentally
pressed the enter button before they had entered the whole phrase.
This behavior resulted in a high error rate for that phrase. These
incidents were nearly equally divided between the two methods (4
TwoStick, 5 QWERTY phrases, 0.1% of the total number).
Because they were anomalies due to the experimental setup and

not representative of normal text entry behavior we decided to
remove these phrases from further analysis.

Due to failed coordination between the sites, we forgot to
present the questionnaire at the end of the first session to one
participant. Consequently these results for that participant are
missing from the following report.

6.2 Speed
The development of text entry speed is shown in Figure 6. There
was no overall effect of text entry method on text entry speed.
However, the effect of session (F19,133 = 88.67, p < .001) was
statistically significant meaning that performance improved over
time. The interaction of method and session was also statistically
significant (F19,133 = 5.38, p < .001) meaning that the learning
progressed at different rates for the two methods.

In the first session the participants were statistically
significantly (t (7)= 2.51, p < .05) faster with QWERTY (6.32
wpm, SD = 2.44) than with TwoStick (5.10 wpm, SD = 1.33). As
Figure 6 indicates there was a cross-over of entry speed during the
experiment. During the last session TwoStick (14.87 wpm, SD =
3.62) was statistically significantly faster (t (7) = 2.83, p < .05)
than QWERTY (12.90 wpm, SD = 2.00). The fastest participant
achieved a mean text entry rate of 21.24 wpm during the last
session. The fastest session mean with the QWERTY selection
keyboard was 15.13 wpm. It was achieved in session 18 by a
different participant.

6.3 Error Rates
We used the error analysis metrics by Soukoreff and MacKenzie
[17] and the analysis software by Wobbrock and Myers [21]. It
classifies errors in two groups: 1) the uncorrected errors are
errors that were left in the transcribed phrases and 2) corrected
errors that are errors the participants made, but corrected while
transcribing. Total error rate is the sum of these two.

6.3.1 Total Error Rate
We found a significant effect of text entry method on total error
rate (F1,7 = 7.17, p < .05) meaning that TwoStick overall was more
error-prone than QWERTY. The effect of session (F19,133 = 3.34, p
< .001) was statistically significant, showing that over time the
total error rate decreased. The interaction of session and method
was not statistically significant.

In the first session participants made significantly (t (7) = 3.88,
p < .01) more errors with TwoStick (13.34%, SD = 4.93) than
with QWERTY (8.58%, SD = 4.41). In the last session there was
no statistically significant difference in total error rate between
TwoStick (8.21%, SD = 4.43) and QWERTY (5.35%, SD = 1.91).

y = 5.3249x0.3461

R2 = 0.9887

y = 6.4939x0.2377

R2 = 0.9882

0

2

4

6

8

10

12

14

16

18

5 10 15 20 25
session

te
xt

 e
nt

ry
 s

pe
ed

 (w
pm

)

TwoStick
QWERTY

Figure 6. Average text entry speed for TwoStick and QWERTY
selection keyboard. The error bars show standard deviations.

 Session 1 Session 20
Scale 1-5 TwoStick QWERTY TwoStick QWERTY

Difficult-Easy 3.4 (1.1) 3.9 (0.9) 3.9 (1.0) 3.9 (1.1)
Pain-Enjoyment 3.1 (0.9) 3.1 (0.9) 3.5 (0.9) 2.8 (0.5)
Slow-Fast 2.3 (1.3) 3.1 (1.3) 4.2 (1.0) 3.1 (0.8)
Many-No Errors 2.1 (1.1) 3.0 (1.2) 1.8 (1.0) 2.6 (0.7)
Bored-Fun 3.4 (0.5) 3.4 (0.8) 4.1 (0.6) 2.8 (1.0)
T-Q short phrases 3.3 (1.6) 2.4 (1.4)
T-Q long phrases 3.4 (1.5) 1.8 (1.1)

Table 2. Means (and standard deviations) of the questionnaires.
The scale is from 1 associated with the left extreme to 5

associated with the right extreme. Last two rows show the ratings
for different phrase lengths.

Over all sessions the total error rate was 8.20% (SD = 1.52) for
TwoStick and 5.52% (SD = 1.13) for QWERTY.

6.3.2 Corrected Error Rate
The effect of text entry method on corrected error rate was
statistically significant (F1,7 = 5.62, p < .05), meaning that
participants correct a different number of errors with different
methods. The effect of session for corrected error rate was also
statistically significant (F19,133 = 3.26, p < .001), showing that over
time the corrected error rate decreased (see Figure 7). The
interaction of session and method was not statistically significant.

In the first session corrected error rate was statistically
significantly higher (t (7) = 4.31, p < .01) with TwoStick (12.67%,
SD = 4.47) than with QWERTY (7.73%, SD = 3.19). In the last
session there was no statistically significant difference between
TwoStick (7.36%, SD = 4.42) and QWERTY (5.08%, SD = 1.83).

During the first session participants corrected 94.90% of all
errors with TwoStick and 90.04% with QWERTY. In the last
session 89.58% of all errors made with TwoStick and 94.91% of
QWERTY errors were corrected.

Over all sessions the corrected error rate was 7.52% (SD =
1.45) for TwoStick and 5.23% (SD = 0.97) for QWERTY.

6.3.3 Uncorrected Error Rate
The effect of method on uncorrected errors (see Figure 8) was
statistically significant (F1,7 = 8.24, p < .05). The participants left
more errors in the text when using TwoStick. The effect of session
and the interaction of method and session were not statistically
significant.

Further t-tests between the methods during the first and the last
sessions showed no statistically significant differences. In the first
session uncorrected error rate of TwoStick was 0.68% (SD = 0.68)
and with QWERTY 0.85% (SD = 1.74). In the last session
uncorrected error rate for TwoStick was 0.86% (SD = 1.15) and
for QWERTY 0.27% (SD = 0.47).

Over all sessions the uncorrected error rate was 0.67% (SD =
0.19) for TwoStick and 0.29% (SD = 0.21) for QWERTY.

6.4 Eyes Free Entry with TwoStick
The 10-minute trial in TwoStick use without the visualization
resulted in an average text entry rate of 7.9 wpm (SD = 3.5) with a
total error rate of 24.23% (SD = 13.3). Participants corrected
98.2% of all errors which led to a corrected error rate of 23.92%
(SD = 13.26) and an uncorrected error rate of 0.32% (SD = 0.97).
These numbers show that eyes-free text entry with TwoStick is
possible even without explicit eyes-free training.

6.5 Questionnaires and Interview Data
The results of the questionnaires after the first and last session can
be seen in Table 2. The values in the two bottom rows of Table 2
show that participants preferred QWERTY in the beginning for
short and long text entry. After the trainings sessions they
preferred TwoStick.

Within the first session there were no statistically significant
differences between the methods. In the last session we found a
significant difference within participants stating that they were
faster (z = 2.46 p < .05) and had more fun (z = 2.41 p < .05) using
TwoStick. The numbers for the questions with statistically
significant differences are shown in bold in Table 2.

The findings above agree with the interview data. In the
beginning QWERTY was preferred, but most of the participants
recognized the potential of TwoStick being faster. With training
the QWERTY selection keyboard became boring. Participants
also felt that they soon reached the limits of their ability to
advance in QWERTY use.

7 DISCUSSION

7.1 Learning and Errors with TwoStick
The main reason for getting faster was that users learned the
layout and needed less and less visual search to complete the task.
Over time stick movement became continuous. It might be
possible to support the visual search and learning of the layout by
separating the zones more clearly by using a wider spacing
between the zones.

Wrong timing of stick movements was the greatest cause of
errors. Looking at the confusion matrices produced by the analysis
software by Wobbrock and Myers [21], we found that participants
started moving the left stick before centering the right stick.

0

2

4

6

8

10

12

14

5 10 15

session

co
rr

ec
ed

 e
rr

or
 ra

te
 (%

) TwoStick
QWERTY

Figure 7. Average corrected error rate for TwoStick and QWERTY

selection keyboard as a function of session number.

0

0,2

0,4

0,6

0,8

1

1,2

5 10 15

session

un
co

rr
ec

te
d

er
ro

r r
at

e
(%

)
TwoStick
QWERTY

Figure 8. Average uncorrected error rate for TwoStick and

QWERTY selection keyboard as a function of session number.

Consequently, they entered characters in the wrong zone, but right
sub-zone (e.g. ‘n’ instead of ‘e’).

Another common error type was missing a zone by one. For
example, an upwards move ending up in one of the upper corner
zones instead of the middle. Wobbrock et al. [23] report that
thumb dexterity and range of motion along one diagonal is better
than along the other diagonal. It might be possible to reduce error
rates by rotating the input area or adjusting the zone borders.

7.2 Comparing TwoStick Performance to Other Methods
Isokoski and Raisamo [6] reported a text entry rate of 13 wpm
with Quikwriting. Our participants achieved 14.9 wpm with
TwoStick. The experiments were not exactly the same. In the
Quikwriting study the participants used Quikwriting with two
input devices learning the Quikwriting layout all the time. Our
participants used different layouts, but had training in the use of
mini-sticks all the time. Novice performance with Quikwriting
was 4 wpm. With TwoStick we measured 5.1 wpm. We suspect
that TwoStick might be easier to learn than Quikwriting.

Comparing our measured novice selection keyboard
performance (6.32 wpm) to Wilson and Agrawala [20] (6.48
wpm) shows only a minute difference. Split selection keyboards
may be faster for novice users (Wilson and Agrawala report 7.08
wpm for QWERTY), but longitudinal data is needed to measure
whether the split design shows a good learning curve. The
anecdotal evidence from Wilson and Agrawala and Wobbrock et
al. as well as our results and the Quikwriting results of Isokoski
and Raisamo all show text entry rates in the range of 13-15 wpm
for joystick-based gamepad text entry. More work is needed to
find out if some of these methods are better than the others.

7.3 TwoStick and Other Input Devices
TwoStick can easily be adapted for use with any input device
capable of producing nine different inputs. As mentioned earlier,
there are similarities to Quikwriting (originally a stylus-based
system) and to TNT [3] (originally a keypad based system). With
TNT users could write at 9.3 wpm (novice) and at 17.7 wpm (after
7.5 hours of training)1. Game consoles are often shipped with a
gamepad and a remote control. A TwoStick/TNT system can be
used for text input with both input devices.

8 CONCLUSION AND FUTURE WORK
We presented TwoStick, a novel text entry method for game
controllers. In an experiment we showed TwoStick to be faster in
expert use than a QWERTY selection keyboard.

Independently from our research a hardware add-on called
Texter [1] was recently announced. Texter is similar to TwoStick,
but works without an on-screen visualization. We greet this
product with joy since it makes our results timely and potentially
valuable for those who consider purchasing this product.

Now that we have established that TwoStick can outperform the
de-facto standard in gamepad text entry, we plan to continue the
search for the most efficient gamepad text entry method by
comparing in more detail those methods that have achieved or are
likely to achieve the same. This group includes Edgewrite,
Dasher, Quikwriting, Split QWERTY and possibly others.

ACKNOWLEDGMENTS
We thank Peter König and Marko Sirka for help with the
implementation and the participants for their time and enthusiasm
in the experiment.

1 Note that Ingmarsson et al. report the peak result for the best
one-minute window in each session. The mean text entry rate over
the whole session is lower.

REFERERNCES
[1] Blue Orb Inc., Texter. http://www.blueorb.com/gaming/whatis.cfm
[2] Co-operwrite. myText. (1997).http://www.my-text.com/
[3] Ingmarsson, M., Dinka, D. and Zhai, S. TNT: a numeric keypad

based text input method. In Proc. CHI 2004, ACM Press (2004),
639-646.

[4] Isokoski, P. and Linden, T. Effect of Foreing Language on Text
Transcription Performance: Finns Writing English. In Proc.
NordiCHI 2004. ACM Press (2004), 105-108.

[5] Isokoski, P. and Raisamo, R. Device independent text input: A
rationale and an example. In Proc. AVI 2000, ACM Press (2000), 76-
83.

[6] Isokoski, P. and Raisamo, R. Quikwriting as a multi-device text
entry method. In Proc. NordiCHI 2004, ACM Press (2004), 105-
108.

[7] Kanellos, M. Microsoft scientists pushing keyboard into the past.
CNET News.com (2006), May 3, 2006.

[8] KeyStick. http://www.n-e-ware.com/KeyStick.htm
[9] Koleman, M. Weegie Homepage. (2001).

http://weegie.sourceforge.net/
[10] MacKenzie, I. S. and Soukoreff, R. W. Phrase sets for evaluating

text entry techniques. In Ext. Abstracts CHI 2003, ACM Press
(2003), 754-755.

[11] MacKenzie, S. Mobile text entry using three keys. In Proc. of
NordiCHI 2002, ACM Press (2002) 27-34.

[12] MobileQWERTY. (2006). http://www.mobience.com/
[13] Perlin, K. Quikwiriting for the Xbox.

http://mrl.nyu.edu/~perlin/experiments/xq/
[14] Perlin, K. Quikwriting: continuous stylus-based text entry. In Proc.

UIST 1998. ACM Press (1998), 215-216.
[15] Proschowsky, M., Schultz, N. and Jacobsen, N.E. An intuitive text

input method for touch wheels. In Proc. CHI 2006. ACM Press
(2006), 467-470.

[16] Silfverberg, M., MacKenzie, I.S. and Korhonen, P. Predicting text
entry speed on mobile phones. In Proc. CHI 2000, ACM Press
(2000), 9-16.

[17] Soukoreff, W. R. and MacKenzie, S. I. Metrics for text entry
research: An evaluation of MSD and KSPC, and a new unified error
metric. In Proc. of CHI 2003. ACM Press (2003), 113-120.

[18] Venolia, D. and Neiberg, F. T-Cube: a fast, self-disclosing pen-based
alphabet. In Proc. of CHI 1994. ACM Press (1994), 265-270.

[19] Ward, D.J., Blackwell, A.F. and MacKay, D.J. Dasher - data entry
interface using continuous gestures and language models. In Proc. of
UIST 2000, ACM Press (2000). 129-137.

[20] Wilson, A. D. and Agrawala, M. Text entry using a dual joystick
game controller. In Proc. CHI 2006. ACM Press (2006), 475-478.

[21] Wobbrock, J.O. and Myers, B.A. Analyzing the input stream for
character-level errors in unconstrained text entry evaluations. ACM
TOCHI, 13, 4 (2006), 458-489.

[22] Wobbrock, J.O. and Myers, B.A. Gestural text entry on multiple
devices. In Proc. ASSETS 2005. ACM Press (2005), 184-185.

[23] Wobbrock, J.O., Myers, B.A. and Aung, H.H. Writing with a
joystick: A comparison of date stamp, selection keyboard and
EdgeWrite. In Proc. GI 2004, CHCCS (2004), 1-8.

[24] Zeller, T. A Great Idea That's All in the Wrist. (June 5, 2005).
http://www.nytimes.com/2005/06/05/
weekinreview/05zeller.html?hp

[25] Zhai, S., Hunter, M. and Smith, B. A. Performance Optimization of
Virtual Keyboards. Human-Computer Interaction, 17, Lawrence
Erlbaum (2002), 229-269.

[26] Zi Corporation, eZiText word prediction.
http://www.zicorp.com/eZiText.htm

